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ABSTRACT

A comparison of modeling techniques to predict hydrological indices in ungauged rivers

Predicting the natural flow regime in ungauged rivers is an important challenge in water resource management and ecological 
research. We developed models to predict 16 hydrological indices in a river network covering the northern third of the Iberian 
Peninsula. Multiple Linear Regression (MLR), Generalized Additive Models (GAMs), Random Forest (RF) and Adaptive 
Neuro Fuzzy Inference System (ANFIS) were used and compared according to their prediction accuracy. The results showed 
that predictive performance varied greatly depending on the modeled hydrological attribute. The magnitude and frequency 
indices were predicted with excellent accuracy. In contrast, no technique was capable of developing precise models for hydro-
logical indices of timing, duration and rate of change. This is mainly related to the lack of proper environmental databases on 
the scales on which these flow regime patterns are influenced. In addition, complex modeling techniques did not always outper-
form linear models and no single approach was optimal for all indices. ANFIS and GAMs provided the best results; however, 
other issues such as computational cost and the level of knowledge required to apply the method and interpret the results should 
be taken into account.
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RESUMEN

Comparación de técnicas de modelado para predecir índices hidrológicos en ríos no aforados

La predicción del régimen natural de caudales en ríos no aforados representa un problema esencial para superar los nuevos 
retos a los que se enfrenta la gestión de los recursos hídricos y la ecología de los sistemas de agua dulce. En este trabajo 
hemos desarrollado modelos para predecir 16 índices hidrológicos en la red fluvial que cubre el tercio norte de la Península 
Ibérica. En concreto se han desarrollado y comparado Regresiones Lineales Múltiples (RLM), Modelos Aditivos Generaliza-
dos (MAG), Bosques Aleatorios (BA) y Sistemas Adaptativos de Inferencia de Lógica Difusa (SAILD). Los resultados han 
puesto de manifiesto que la capacidad predictiva varía significativamente dependiendo del tipo de índice hidrológico mode-
lado. Los modelos de los índices de magnitud y frecuencia mostraron una capacidad predictiva excelente. Por el contrario, 
los modelos de los índices hidrológicos relacionados con la temporalidad, la duración de periodos de caudales altos o bajos 
y la tasa de cambio mostraron una capacidad de predicción limitada. Esto se relaciona, en gran medida, con la falta de bases 
de datos de variables predictoras con escalas espacio-temporal adecuadas. Por otro lado, las técnicas estadísticas más 
complejas no siempre mostraron capacidades predictivas mayores que los RLM y, además, no se encontró un método que 
ofreciese resultados óptimos para todos los índices. SAILD y MAG obtuvieron, por norma general, los mejores resultados, 
sin embrago, consideramos que otros elementos, tales como los recursos computacionales requeridos o la experiencia 
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necesaria para aplicar la técnica e interpretar los resultados, deben tenerse en muy en cuenta a la hora de seleccionar el 
método más adecuado.

Palabras clave: Régimen natural de caudales, predicción, regresión múltiple, modelos aditivos generalizados, aprendizaje 
automático



16827_Limnetica 37(1), pàgina 1, 14/09/2017

Limnetica, 37(1): 145-158 (2018)

146 Peñas et al.

in Streams. River Research and Application, 
26, 118-136. DOI: 10.1002/rra.1247 

CLAUSEN, B., & C.P. PEARSON, 1995. 
Regional Frequency-Analysis of Annual Max-
imum Streamflow Drought. Journal of 
Hydrology, 173, 111-130. DOI: 10.1016/0022-
1694(95)02713-Y

HEUVELMANS, G., B. MUYS & J. FEYEN. 
2006, Regionalisation of the parameters of a 
hydrological model: Comparison of linear 
regression models with artificial neural nets. 
Journal of Hydrology, 319, 245-265. DOI: 
10.1016/j.jhydrol.2005.07.030

ELITH, J., C.H. GRAHAM, R. P. ANDERSON, 
M. DUDIK, S. FERRIER, A. GUISAN, R.J. 
HIJMANS, F. HUETTMANN, J.R. LEATH-
WICK, A. LEHMANN, J. LI, L.G. 
LOHMANN, B.A. LOISELLE, G. MANION, 
C. MORITZ, M. NAKAMURA, Y. NAKA-
ZAWA, J.M. OVERTON, A.T. PETERSON, 
S.J. PHILLIPS, K. RICHARDSON, R. SCA-
CHETTI-PEREIRA, R.E. SCHAPIRE, J. 
SOBERON, S. WILLIAMS, M.S. WISZ, & 
N.E. ZIMMERMANN. 2006. Novel methods 
improve prediction of species' distributions 
from occurrence data. Ecography, 29, 129-151. 
DOI: 10.1111/j.2006.0906-7590.04596.x 

HASTIE, T. & R. TIBSHIRANI. 1986. General-
ized additive models. Statistical Science, 1, 
297–318.

JANG, J. S. R. 1993. Anfis-Adaptive-Net-
work-Based Fuzzy Inference System. IEEE 
Transactions on Systems Man and Cybernet-
ics, 23, 665-685. 

KAMPICHLER, C., R. WIELAND, S. CALME, 
H. WEISSENBERGER & S. ARRIA-
GA-WEISS. 2010. Classification in conser-
vation biology: A comparison of five 
machine-learning methods. Ecological Infor-
matics, 5, 441-450. DOI: 10.1016/j.ecoinf.
2010.06.003

KENNARD, M. J., B.J. PUSEY, J.D. OLDEN, 
S.J. MACKAY, J.L. STEIN & N. MARSH 
2010. Classification of natural flow regimes in 
Australia to support environmental flow man-
agement. Freshwater Biology, 55, 171–193. 
DOI: 10.1111/j.1365-2427.2009.02307.x

KENNEN, J. G., L.J. KAUFFMAN, M.A. 
AYERS, D.M. WOLOCK & S.J. COLARUL-

LO. 2008. Use of an integrated flow model to 
estimate ecologically relevant hydrologic 
characteristics at stream biomonitoring sites. 
Ecological Modelling, 211, 57-76. DOI: 
10.1016/j.ecolmodel.2007.08.014

KNIGHT, R. R., W.S. GAIN & W.J. WOLFE. 
2011. Modelling ecological flow regime: an 
example from the Tennessee and Cumberland 
River basins. Ecohydrology, 5, 613-627. DOI: 
10.1002/eco.246

KROLL, C. N., J. LUZ, B. ALLEN & R.M. 
VOGEL. 2004. Developing a watershed char-
acteristics database to improve low stream-
flow prediction. Journal of Hydrologic Engi-
neering, 9(2): 116-125 DOI: 10.1061/(ASCE)
1084-0699(2004)9:2(116)

LANE, B. A, H.E. DAHLKE, G.B. PASTER-
NACK & S. SANDOVAL-SOLIS. 2017. 
Revealing the diversity of Natural Hydrologic 
Regimes in California with Relevance for 
Environmental Flows Applications. Journal of 
the American Water Resources Association, 53 
(2), 411-430. DOI:  10.1111/1752-1688.12504

MANEL, S., J.M. DIAS, S.T. BUCKTON, & S.J. 
ORMEROD. 1999. Alternative methods for 
predicting species distribution: an illustration 
with Himalayan river birds. Journal of 
Applied Ecology, 36, 734-747. DOI: 10.1046/
j.1365-2664.1999.00440.x

MARCE, R., M. COMERMA, J.C. GARCIA, & J. 
ARMENGOL. 2004. A neuro-fuzzy modeling 
tool to estimate fluvial nutrient loads in water-
sheds under time-varying human impact. 
Limnology and Oceanography: Methods, 2, 
342-355. DOI: 10.4319/lom.2004.2.342

MARMION, M., J. HJORT, W. THUILLER, & 
M. LUOTO. 2008. A comparison of predic-
tive methods in modelling the distribution of 
periglacial landforms in Finnish Lapland. 
Earth Surface Processes and Landforms, 33, 
2241-2254. DOI: 10.1002/esp.1695

NAIMAN, R.J., T.J. BEECHIE, L.E. BENDA, 
D.R. BERG, P.A. BISSON, L.H. MACDON-
ALD, M.D. O’CONNOR, P.L. OLSON, & 
E.A. STEEL. 1992. Fundamental elements of 
ecologically healthy watersheds in the pacific 
northwest coastal ecoregion. In: Watershed 
Management: Balancing Sustainability and 
Environmental Change. R.J. Naiman (ed): 

understanding of this technique over other 
machine learning approaches.

CONCLUSION

The application of four modeling techniques to 
predict 16 environmentally meaningful hydrologi-
cal indices evidenced that all techniques might be 
suitable, since they showed similar prediction 
ability. Nonetheless, the accuracy of complex 
modeling techniques equal to that of more classi-
cal methods may be associated with the low 
number of unaltered gauges used to fit the models. 
Expanding this comparison to larger areas with a 
higher number of unaltered gauges will allow the 
actual potential of the most sophisticated methods 
to be analyzed. ANFIS represented a slight 
improvement over MLR, although the computa-
tional cost and level of knowledge required to 
apply the method and interpret the results may 
limit its application. It is widely accepted that 
machine learning techniques are capable of 
dealing with linear and non-linear relationships. 
Hence, we believe that machine learning 
techniques must be considered when they do not 
entail a significant increase in the required 
resources and the links between hydrological 
indices and predictors can be clearly understood. 

On the other hand, not all hydrological indices 
were predicted with the same accuracy, resulting 
in critical implications and limitations depending 
on the further uses of these predictions. Magni-
tude and frequency indices were generally 
predicted with excellent accuracy, which opens a 
promising window to address several freshwater 
management and ecological issues. In contrast, 
none of the employed techniques allowed precise 
models for timing, duration and rate-of-change 
indices to be developed. Therefore, a major effort 
should be made to improve environmental 
databases in order to provide this climatic, 
geological, edaphological and groundwater infor-
mation on the spatio-temporal scales on which 
flow regime patterns are influenced.
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variety of ecological and earth science variables 
have also highlighted that alternative complex 
techniques did not exhibit great differences in 
their prediction accuracy relative to traditional 
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found that complex modeling techniques outper-
formed linear approaches for predicting hydrolog-
ical attributes (Booker & Snelder, 2012; Tisseuil 
et al., 2010), fluvial nutrient load (Marce et al., 
2004) or species distribution (Elith et al., 2006). 
Most of these authors emphasized the high flexi-
bility of non-linear techniques in capturing com-
plex relationships between predictor and response 
variables (Elith et al., 2006). However, when the 
underlying data structure and assumptions are met 
for a particular modeling method (e.g., linearity 
for MLR), the application of complex techniques 
does not necessarily produce significant improve-
ments in model performance (Olden & Jackson, 
2002a). This is the case for the hydrological 
indices of magnitude. However, GAMs, RF and 
ANFIS usually outperformed MLR in indices in 
which linearity was rarely achieved, e.g., pred, 
FRE3, dPhigh, nPos and nNeg (Table 3). It must 
be also stressed that GAMs and ANFIS outper-
formed MLR (>5 %) in five and seven out of eight 
magnitude indices, respectively. GAMs allow for 
both linear and non-linear additive response 
shapes (Hastie & Tibshirani, 1986; Wood & 
Augustin, 2002). Hence, despite the linearity of 
several relationships, GAMs were able to tune the 
response more finely in specific sections where 
relationships were not linear. 

The small gains in predictive performance of 
complex modeling, i.e., machine learning, 
techniques can be attributed to the low number of 
training sites (Kampichler et al., 2010). Since 
machine learning techniques are viewed as 
data-intensive methods and the spatial availability 
of hydrological data sets is typically small, their 
application is limited. In this sense, studies in 
which complex modeling methods outperformed 
linear approaches have presented a number of 
sites on a scale of thousands (e.g., Prasad et al., 
2006), which contrasts with the 156 sites used in 
this work. Therefore, the application of these 
kinds of methods is promising where spatial 
coverage of hydrological data is substantial.  

Beyond the predictive performance of the 
models, other characteristics such as the statistical 
skills needed to develop them and interpret the 
results must be taken into account when selecting 
the optimal modeling technique. For instance, 
ANFIS required the definition of the number and 
shape of MF, and it is recommended (Marcé et al., 
2004) that these processes be carried out through 
an independent cross-validation process, as 
achieved in this work. On the other hand, the 
application of MLR involves complying with the 
assumptions of normality, homoscedasticity, inde-
pendence and linearity, which was accomplished 
through different transformations (Tables 1 and 
2). Given the disparity in the nature of hydrologi-
cal indices and environmental data, no single 
transformation could be applied systematically 
and, as shown here, transformation does not 
always assure compliance with assumptions. In 
contrast, RF was the only fully automated tech-
nique, in which the distribution of the variables 
does not have to comply with any assumption 
(Breiman, 2001), which reduces the time needed 
and facilitates its application by users who are not 
specialists in statistics. Lastly, the ability of each 
technique to identify the actual relationships 
between the hydrological indices and the environ-
mental variables must be taken into account. The 
four techniques agreed in the identification of the 
most important predictors for most of the models. 
However, MLR and GAMs allow straightforward 
relationships between predictors and response 
variables to be set (Manel et al., 1999). In contrast, 
machine learning methods have been largely seen 
as “black boxes.” For instance, the development 
of ANFIS models and the understanding of results 
require substantial time and knowledge, although 
enormous progress has been made in understand-
ing the relationships underlying this technique 
(Marce et al., 2004; Olden & Jackson, 2002b). On 
the other hand, RF results form an ensemble of 
regression trees and may also become a black box 
when interpreting the results (Prasad et al., 2006). 
Nonetheless, the ‘randomForest’ package of R 
statistical software incorporates specific functions 
to numerically and graphically visualize the 
marginal effect of each predictor variable on the 
response (e.g., Alvarez-Cabria et al., 2016). These 
features definitively facilitate the application and 

MA and MH indices is related to their dependence 
on precipitation events and direct catchment 
runoff (Tisseuil et al., 2010). Precipitation 
variables were derived from 1000x1000-m precip-
itation grids and it was demonstrated that they 
were precise enough to produce reliable models. In 
this regard, there are several previous studies that 
have found strong relationships between hydrolog-
ical variables and climatic predictor attributes 
(Carlise et al., 2010: Reidy-Liermann et al., 2011; 
Sanborn & Bledsoe, 2006). For instance, 
Reidy-Lierman et al. (2011) found that spring 
precipitation was the most important variable for 
discriminating rivers dominated by rain, snowmelt 
or mixed rivers. This agreed with our findings that 
Pre4 was among the most important variables for 
predicting flow magnitude, as all these river types 
can be found in this study area (Bejarano et al., 
2010). Moreover, Solans & Poff (2015) and Beja-
rano et al. (2010) found that the segregation of 
river types in the Ebro Basin is largely explained 
by the variability of climatic predictors such as 
temperature, evapotranspiration and precipitation. 
In this regard, the high gradient of EvMx and 
PreSu values that prevails from the oceanic west-
ern part to the eastern Mediterranean sector plays 
a significant role in the discrimination of flow 
magnitudes across the study area.

On the other hand, the errors of ML index 
models have been relatively high. In most 
instances, significant correlations between ML 
indices and soil and geology characteristics have 
been observed in previous works (Clausen & 
Pearson, 1995; Kroll et al., 2004, Lane et al., 
2017). The inclusion of these variables allowed 
prediction performances comparable to those 
showed by MA and MH indices to be obtained 
(Knight et al., 2011; Sanborn & Bledsoe, 2006). 
It is likely that the small contribution of these 
variables in the present study was due to the low 
precision of the geology and soil data rather than 
the lack of causal links. The most detailed soil 
and geology maps in the study area have a 1:200 
000 scale, which contrasts with the accuracy of 
the topography (25x25-m DEM), climatic 
(1000x1000-m grid) and land-use (1:25 000) data 
sources. Thus, we believe that improving soil and 
subsurface geology information should lead to 
improvements in modeling ML indices. 

Regressions carried out elsewhere (Knight et 
al., 2011; Sanborn & Bledsoe, 2006) have encoun-
tered difficulties in accurately predicting frequen-
cy indices, while we were able to predict FRE3 
with a reasonable accuracy. The most important 
predictor variables for FRE3 were ele and pre, 
which agreed with results highlighted in previous 
studies (Carlisle et al., 2010; Knight et al., 2011; 
Ourada et al., 2001). This result is not surprising, 
as the combination of peak flows of nonsynchro-
nous tributaries in the travel of flows downstream, 
i.e. to river segments showing lower elev, has been 
observed to attenuate and dampen flow peaks, 
reducing the number of times a flow overcomes a 
threshold (Naiman et al., 1998; Poff et al., 1997).

However, it must be also pointed out that 
FRE3 takes into account moderate-high flow 
events that usually last several days. The duration 
of these events contrasts with the time scale of the 
commonly available climate database. For 
instance, in our study area only mean monthly 
precipitation series were available, which presum-
ably lacked the proper time scale to characterize 
these events. Hence, the availability of daily 
precipitation data and its inclusion in models simi-
lar to those used in this study could be assumed to 
be highly beneficial for predicting these indices. 

In addition, the lack of proper predictor 
variables has probably been the critical element 
hindering the development of more accurate 
models for the duration, rate-of-change and 
timing indices. For these three groups of hydro-
logical indices, predictor variables derived from 
precipitation series (PreMx, PreMn and MPrRn) 
were the most contributing variables. Given these 
results, it could be speculated that that the wettest 
areas presented longer high-flow and shorter 
low-flow events, along with a higher rate of flow 
rise and fall, than zones where precipitation is 
scarce. However, even if these relationships may 
seem obvious and expected, they cannot be 
assured with certainty due to the low accuracy of 
the obtained models.  

Comparison of modeling techniques

Our analysis demonstrated that there was not an 
optimal technique to predict all hydrological 
indices. Several works focused on modeling a 

RESULTS

Model performance and predictor variables

The results exhibited a wide range of predictive 
performance, with adjusted R2s ranging from 
0.16 (MLR-Pred) to 0.88 (ANFIS-M4 and 
ANFIS-30HF; Table 3). However, all the models 
presented a level of significance p-value<0.01 
when tested against the F statistic hypothesis. 
Model performance was higher when predicting 
the flow magnitude (MA, MH and ML) and 
frequency indices (FH: FRE7) than when predict-
ing the timing (T: JMax; JMin and Pred), dura-
tion (DH: dPHigh and DL: dPLow) and 
rate-of-change (RC: nPos and nNeg) indices 
(K-W chi-squared=57.9, df=7, p-value<0.001; 
Table 3). In addition, for each hydrological index, 
the predictor variables kept the order of impor-
tance regardless of the modeling technique used. 
In this regard, it must be highlighted that, accord-
ing to the Person correlation values, neither of the 
geology variables, Perm and Hard, were selected 
within the set of 6 initial predictor variables. The 
MA (except for M9) and MH indices were 
predicted with excellent accuracy, showing 
adjusted R2s that commonly exceeded 0.8. In 
contrast, models of 30LF and X95 registered 
lower adjusted R2s, which ranged from 15 to 25 
% below those of the MA and MH indices. Are, 
annual (Pre), summer (PreSu) and April precipi-
tation (Pre4) were the most important variables in 
practically all the flow magnitude models, espe-
cially those developed for MA and MH. On the 
other hand, when predicting the M9 and ML 
indices, other environmental variables such as 
gra, EvMx and QPrRn presented high contribu-
tion rates to the models. The timing index models 
presented the lowest predictive performances 
(Table 3). In general, adjusted R2s for the JMax 
and JMin indices were not greater than 0.2, while 
the best model for Pred reached 0.4 (Table 3). Pre 
and MPrRn were selected in all models for Jmax. 
MPrRn, Eva and Ele were commonly included in 
the models for JMin. Pred was related mainly to 
PreMx and Gra. FRE3 was predicted with a max-
imum adjusted R2 of 0.71 (Table 3), and the most 
influential variables were Ele, PrMx and QPrRn. 
Models for predicting dPHigh and dPlow rarely 

reached an adjusted R2 over 0.3, and PrMx and 
PrMn were the most contributing variables, 
respectively (Table 3). Finally, models for nPos 
and nNeg showed adjusted R2s close to 0.5 (Table 
3). Pre, Ele and MPrRn were the most influential 
variables in all of these models. 

Comparison of modeling techniques

Differences in prediction accuracy among the 
different modeling techniques were not large 
(K-W chi-squared=1.44, df=3, p-value=0.7; Table 
3). However, although differences were not signif-
icant, it must be remarked that the GAMs and 
ANFIS techniques outperformed MLR by more 
than 5 % of the adjusted R2 in 10 and 13 hydrolog-
ical indices, respectively. The greatest improve-
ment in the predictive performance of these two 
techniques with respect to MLR was observed for 
the magnitude indices. ANFIS presented a mean 
increase of 7 % in the adjusted R2 compared to 
MLR in all the magnitude indices, but this only 
resulted in marginal differences (K-W 
chi-squared=2.8487, df=1, p-value=0.09). If only 
the MA and MH indices were considered, the 
differences in performance between MLR and 
ANFIS reached up to more than 10%, and signifi-
cant differences were observed (K-W 
chi-squared=5.13, df=1, p-value=0.02). Differ-
ences between MLR and GAMs that resulted in 
improvements in adjusted R2s beyond 5 % were 
found only for the MA and MH indices (WK-W 
chi-squared=6.72, df=1, p-value=0.01). In addi-
tion, ANFIS and GAMs outperformed MLR in 
one or several of the other index types (T, F and 
RC). On the other hand, RF did not show signifi-
cant enhancements in relation to MLR (K-W 
chi-squared=0.017439, df=1, p-value=0.8949). 

DISCUSSION

Model performance and predictor variables

This study confirms the findings of other works 
that not all the hydrological indices present the 
same potential to be predicted (Carlisle et al., 
2010; Yadav et al., 2007). Among the magnitude 
indices, MA and MH outperformed the ML 
indices. The high predictive performance of the 

leaving out one gauge at a time, developing a new 
model based on the remaining 155 observations 
and finally estimating the hydrological index for 
the left-out gauge. The results from this proce-
dure produced estimates of each hydrological 
metric as if the gauging station were an ungauged 
site. The variation between observed and predict-
ed values represents the uncertainty with which 
the model would be applied to predict index 
values at ungauged sites (Carlisle et al., 2010) 
and allows an assessment of the robustness of 
each method for estimating hydrological indices. 

We employed the root-mean-square-deviance 
(RMSD) and the adjusted R2 to assess the corre-
spondence between observed and estimated 
values as a relative performance of each model, 
following other authors (Carlisle et al., 2010; 
Sanborn & Bledsoe, 2006; Van Sickle et al., 
2006). Hence, models producing the lowest 
RMSD and the highest adjusted R2 were deemed 
superior. In addition, we used Kruscal-Wallis to 
test whether the differences in adjusted R2 found 
between the modeled indices and modeling 
techniques were significant.

homogeneous as possible based on series of 
binary rules. RF introduces random variation to 
CARTs by growing a defined number of trees 
with a bootstrap sample of the training data and a 
random sample of the predictors. The importance 
of the predictor variables is evaluated by random-
ly permuting each predictor variable in turn and 
predicting the response of the bootstrap sample 
observations. The decrease in prediction perfor-
mance is the measure of importance of the origi-
nal variable. Non-transformed response or 
predictor variables were used in the RF models.

Adaptive Neuro-Fuzzy Inference System (ANFIS)

ANFIS combines qualitative aspects of human 
knowledge from Fuzzy Inference Systems (FISs) 
with an effective, advanced machine learning 
method (neural networks) to adjust and tune these 
rules (Jang, 1993). 

A FIS is based on fuzzy decision rules and the 
fuzzy reasoning unit (Jang, 1993). The fuzzy 
decision rules (if-then rules) are rules expressed 
in the form “if X (input variable) is A then Y 
(output variable) is B”, where A (premise) and B 
(consequence) are linguistic values (e.g., high 
and low). Fuzzy logic allows, within these 
decision rules, any judgment state to take values 
between 0 and 1 according to its probability. In 
this regard, Membership Functions (MFs) are the 
functions that relate a variable to the probabilities 
associated with the judgment states.  

Fuzzy reasoning is an inference procedure 
used to derive conclusions from a set of fuzzy 
decision rules. The steps of fuzzy reasoning 
performed by a FIS are (Jang, 1993; Marce et al., 
2004):

1. Compare the input variables with the 
MFs in the premise part of the fuzzy rules to 
obtain the probability of each linguistic label 
(fuzzification).

2. Combine (through logic operators) the 
probability in the premise part to get the weight of 
each rule. 

3. Generate the qualified consequent of 
each rule depending on its weight.

4. Aggregate the qualified consequents to 
produce a crisp output (defuzzification). 

Given an input-output problem, the construc-

tion of a FIS has two fundamental steps: the spec-
ification of an appropriate number and type of 
input and output MFs (structure identification) 
and the specification of the shape of the MFs 
(parameter estimation). The structure identifica-
tion was solved by applying a trial-and-error 
procedure and a conservative criterion (i.e., mini-
mum number of parameters in the best fit). More-
over, since the maximum number of parameters 
to be fitted increases exponentially with the 
number of variables and MFs and the total 
number of parameters should not exceed 1/6 the 
number of cases (Marce et al., 2004), a maximum 
of 3 MFs was established.  Once the model struc-
ture, i.e., number of MFs, was defined, we 
estimated the parameters corresponding to each 
MF through the use of a numerical method called 
the Hybrid Learning Method (Marce et al., 2004). 
Specifically, these parameters were defined using 
adaptive neural networks algorithms. To avoid 
overfitting problems during the estimation of 
these parameters, the data set was randomly split 
into a training set (2/3 of the data set) used to fit 
the values and a trial set (1/3 of the data), which 
was not used by the hybrid learning algorithm. 
The splitting procedure was repeated 200 times 
and each time the parameters were adjusted 
individually. The hydrological indices were 
converted to the range (0 1), while the environ-
mental variables were converted to z-scores (i.e., 
mean=0, standard deviation=1) according to 
ANFIS requirements. Finally, to obtain the 
importance of the predictors in each model, envi-
ronmental variables were removed from the 
model one at a time while holding all other 
predictor variables. Then, for each model we 
calculated the predictive performance through the 
adjusted R2. The larger the decrease of predictive 
performance, the greater the assumed importance 
of that variable. 

Validation and evaluation of model perfor-
mance

A jackknife cross–validation procedure was 
performed with R statistical software to test the 
predictive performance of each modeling 
technique for the 16 hydrological indices. This 
cross-validation procedure was applied by 

Environmental variables (predictors)

Several studies have highlighted the importance 
of climate, topography, land cover and geology 
on the hydrological regime regardless of 
geographic location (Kennard et al., 2010; Lane 
et al., 2017; Sanborn & Bledsoe, 2006). Thus, 
environmental variables were used to explain the 
hydrological character of the recorded flow series 
and predict this character in the entire river 
network. A synthetic river network (SRN) was 
delineated using a 25-m digital elevation model 
(DEM) with the NestStream program (Benda et 
al., 2007). The SRN comprised 667 406 segments 
with lengths ranging from 16 to 800 m and was 
used as a spatial network to integrate the hydro-
logical and environmental information. Predictor 
variables were extracted from existing databases 
provided by several national and regional institu-
tions. The predictor variables for each segment 
represented the mean value of the variables in the 
upstream catchment. A set of 19 variables was 
selected (Table 2); detailed information regarding 
the units, scale and sources of information can be 
found in Peñas et al. (2014).

In addition, according to the maximum 
number of degrees of freedom allowed by the 
different techniques, a maximum of 6 predictor 
variables was established for the models. The 
selection of these 6 variables was based on the 
combination of scatter plots (hydrological 
indices versus environmental variables) and 
parametric correlations to identify the environ-
mental variables that were most meaningful for 
the prediction of each dependent variable (Knight 
et al., 2011). In this regard, the Pearson correla-
tion values between the hydrological indices and 
the predictor variables were used as the main 
screening criterion. Hence, for each hydrological 
index, we selected the 6 predictor variables with 
the highest correlation values. 

Modeling Techniques

The predictive performance of 4 distinct 
techniques to model hydrological indices was 
compared in this study. Modeling and statistical 
analysis were performed with R statistical 
software using the stats (v.3.3.2), gam (v.1.14) 

and randomForest (v.4.6 ) packages, except in the 
case of ANFIS models, which were developed 
using functions from the Mathwork´s MATLAB 
Fuzzy Logic Toolbox (FLT) included in a 
MATLAB code programmed by Marcé et al. 
(2004) and adapted by the authors to carry out the 
specific analyses performed in this study. The 
following section briefly describes each of the 
five modeling techniques.

Multiple Linear Regression (MLR)

MLR assumes a linear relationship between the 
predictor and the response variables through the 
estimation of parameters for each predictor. 
Specific transformations (Tables 1 and 2) were 
applied to meet the assumptions (normality, inde-
pendence and homoscedasticity) for applying 
MLR. If data did not meet the assumptions 
through any transformation, that which was 
closest to meeting these requirements was used. 
The relative importance of each variable was 
established based on the comparison of the 
regression test statistic T value. 

Generalized Additive Models (GAMs)

GAMs are semi-parametric models (Hastie & 
Tibshirani, 1986) that relate the predictor and 
dependent variable through a link function and 
estimate a non-parametric function for each 
predictor in order to adapt it to the local behavior 
of the regression function in several regions (Ven-
ables & Dichmont, 2004). The identity link func-
tion of the Gaussian family was applied to the 
transformed variables using the same transforma-
tions as in MLR, given that they were assumed to 
be normally distributed. Thin plate regression 
splines were used with a maximum of 3 degrees of 
freedom. Parallel to MLR, the relative importance 
of each variable was established based in the com-
parison of the regression test statistic T value. 

Random Forest (RF)

RF (Breiman, 2001) comprises an ensemble of 
individual Classification and Regression Trees 
(CARTs). CARTs split the dimensional space 
defined by the predictors into groups that are as 

unaffected by impoundments or significant 
abstraction upstream were selected for analysis. 
In addition, we selected gauges with data avail-
able for the 1976-2010 period and analyzed the 
quality of the series (Peñas et al., 2014). Finally, 
156 gauges were selected, which accounted for an 
average length of 17 years of data (Fig. 1).

It was beyond the scope of this study to 

predict and evaluate all the hydrological indices 
currently in use (see Olden & Poff, 2003); there-
fore, we selected one or several indices represent-
ing each of the five ecologically relevant aspects 
of the flow regime, i.e., magnitude, timing, 
frequency, duration and rate of change (Olden & 
Poff, 2003; Table 1).

tion fittings has been pointed out (Sanborn & 
Bledsoe, 2006). There are many examples of the 
use of other modeling and machine learning 
techniques to model many environmental issues 
(e.g., Alvarez-Cabria et al., 2016; Elith et al., 
2006; Manel et al., 1999, Marcé et al., 2004). In 
contrast, their application in the prediction of 
hydrological indices has been limited, although 
they could provide important benefits in this field 
(Alcázar et al., 2008; Heuvelmans et al., 2006; 
Snelder et al., 2009).

In this study we concentrated on developing 
statistical models for 16 hydrological indices 
covering the 5 ecologically relevant hydrologic 
attributes (i.e., magnitude, timing, frequency, 
duration and rate of change; Poff et al., 1997). We 
used one traditional technique (Multiple Linear 
Regression (MLR) and three more complex 
techniques that apply contrasting rationale to 
model the distribution of the response variable: 
Generalized Additive Models (GAMs), Random 
Forest (RF) and Adaptive Neuro-Fuzzy Inference 
System (ANFIS). Therefore, the objectives of this 
study were to 1) explore the ability of models to 
predict different types of hydrological indices and 
2) compare the performance of 5 modeling 
techniques to predict 16 hydrological indices at 
ungauged sites. 

METHODS

Study Area

The study area comprises the catchments of the 
northern third of the Iberian Peninsula (Fig. 1), 
covering a total area greater than 124 000 km2. It 
includes a heterogeneous set of environmental 
conditions. 

The area draining into the Cantabrian Sea 
encompasses several catchments with drainage 
areas ranging from 30 to 4907 km2, covering a 
total area of 22 000 km2. The rivers are confined 
by the Cantabrian Cordillera, which reaches up to 
2600 m a.s.l. and runs parallel to the coast. Thus, 
they are characterized by high slopes and short 
main stream lengths. The climate varies from 
thermo-temperate Atlantic on the coast to oro- 
and supra-temperate in the inner regions 
(Rivas-Martínez et al., 2004). Precipitation is 

abundant throughout the year with a mean of 
1300 mm/year, with maximum rainfall in Decem-
ber (150 mm/month) and minimum in July (50 
mm/month). Snowfall is frequent in winter above 
1000 m a.s.l. More than 50 % of the surface is 
covered by deciduous forest, scrubs and grass-
lands, while 10 % is occupied by agriculture. 

Meanwhile, the Mediterranean area is mainly 
covered by the Ebro catchment, along with a set 
of medium-sized basins in the east coast. The 
Ebro catchment covers a total area of 85 530 km2. 
It is enclosed by the Cantabrian Mountains and 
the Pyrenees (3400 m a.s.l.) in the north, the Cata-
lan Coastal Chain (1712 m a.s.l.) in the east, and 
from the north-west to the south-east by the 
Iberian massif (2300 m a.s.l.), which creates a 
dense river network in the catchment boundaries 
and an extended flat surface in the interior. This 
area is characterized by a meso-Mediterranean 
and supra-Mediterranean climate (Rivas-Martínez 
et al., 2004), with a mean annual precipitation of 
650 mm, varying from 300 mm in the central area 
of the main fluvial axis to 1700 mm in the Pyre-
nees Mountains, where snow is abundant in 
winter and early spring (Bejarano et al., 2010). 
The precipitation regime in the Mediterranean 
region has its maxima in autumn and spring and 
minima in winter and summer. Agricultural land 
accounts for 50 % of this territory. 

The Catalan catchments comprises several 
catchments ranging from 72 to 5000 km2, cover-
ing a total area of 16 500 km2 that drains directly 
from the Pyrenees or the Catalan Coastal Chain 
to the sea. This area is dominated by the Mediter-
ranean oceanic climate on the coast and a temper-
ate climate in the mountains. Precipitation 
declines from an annual mean of 1200 mm/year at 
the northern river heads to less than 500 mm/year 
in the southern catchments. Coniferous and 
broadleaf forest, scrubs and grasslands occupy 
more than 60 % of the surface in the northern 
catchments, which are progressively replaced by 
agricultural land in the south.

Hydrologic Data and Hydrological Indices

Several Spanish water agencies and regional 
governments provided series of daily mean flow 
measured at 428 gauging stations. Only gauges 

INTRODUCTION

River flow regime is a key element that structures 
freshwater ecosystems (Poff et al., 1997). Indeed, 
the understanding of the bio-physical associations 
between hydrological variability and stream 
biological communities is a critical scientific and 
management challenge (Alvarez-Cabria et al., 
2017). However, it is frequently the case that 
streamflow data are not available at a site of inter-
est such as where biomonitoring is carried out 
(Poff & Zimmerman, 2010; Sanborn & Bledsoe, 
2006). This hinders the exploration of the flow 
regime influence on stream ecology and ultimate-
ly the management of these systems. 

Natural flow regime can be described through 
a collection of ecologically relevant hydrological 
indices (Olden & Poff, 2003). Hence, interest in 

the prediction of these hydrological indices in 
ungauged streams has grown rapidly in recent 
years (Carlisle et al., 2010; Kennen et al., 2008). 
Most of the work has been aimed at addressing 
water yield and flooding issues. Thus, models to 
predict average flows, flood quantiles, flow dura-
tion curves or low-flow parameters dominate the 
literature (Sanborn & Bledsoe, 2006). In contrast, 
prediction of ecologically relevant hydrological 
indices has received limited attention (Carlisle et 
al., 2010; Knight et al., 2011; Sanborn & Bled-
soe, 2006). 

Multiple linear regression has been the most 
commonly used statistical technique to predict 
hydrological indices in ungauged sites (Knight et 
al., 2011). However, the potential improvement 
in model performance when using other modeling 
procedures that do not assume specific distribu-

Figure 1.   Map of unregulated gauges (●; n=156) in the study area. Black lines divide the Cantabrian, Ebro and Catalan catchments. 
(CS: Cantabrian Sea; MS: Mediterranean Sea). Mapa de aforos no regulados en el área de estudio (●; n=156). Las líneas negras 
dividen las cuencas del Cantábrico, del Ebro y de Cataluña (CS: Mar Cántabro; MS: Mar Mediterráneo).
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ABSTRACT

A comparison of modeling techniques to predict hydrological indices in ungauged rivers

Predicting the natural flow regime in ungauged rivers is an important challenge in water resource management and ecological 
research. We developed models to predict 16 hydrological indices in a river network covering the northern third of the Iberian 
Peninsula. Multiple Linear Regression (MLR), Generalized Additive Models (GAMs), Random Forest (RF) and Adaptive 
Neuro Fuzzy Inference System (ANFIS) were used and compared according to their prediction accuracy. The results showed 
that predictive performance varied greatly depending on the modeled hydrological attribute. The magnitude and frequency 
indices were predicted with excellent accuracy. In contrast, no technique was capable of developing precise models for hydro-
logical indices of timing, duration and rate of change. This is mainly related to the lack of proper environmental databases on 
the scales on which these flow regime patterns are influenced. In addition, complex modeling techniques did not always outper-
form linear models and no single approach was optimal for all indices. ANFIS and GAMs provided the best results; however, 
other issues such as computational cost and the level of knowledge required to apply the method and interpret the results should 
be taken into account.

Key words: natural flow regime, prediction, linear regression, generalized additive models, machine learning

RESUMEN

Comparación de técnicas de modelado para predecir índices hidrológicos en ríos no aforados

La predicción del régimen natural de caudales en ríos no aforados representa un problema esencial para superar los nuevos 
retos a los que se enfrenta la gestión de los recursos hídricos y la ecología de los sistemas de agua dulce. En este trabajo 
hemos desarrollado modelos para predecir 16 índices hidrológicos en la red fluvial que cubre el tercio norte de la Península 
Ibérica. En concreto se han desarrollado y comparado Regresiones Lineales Múltiples (RLM), Modelos Aditivos Generaliza-
dos (MAG), Bosques Aleatorios (BA) y Sistemas Adaptativos de Inferencia de Lógica Difusa (SAILD). Los resultados han 
puesto de manifiesto que la capacidad predictiva varía significativamente dependiendo del tipo de índice hidrológico mode-
lado. Los modelos de los índices de magnitud y frecuencia mostraron una capacidad predictiva excelente. Por el contrario, 
los modelos de los índices hidrológicos relacionados con la temporalidad, la duración de periodos de caudales altos o bajos 
y la tasa de cambio mostraron una capacidad de predicción limitada. Esto se relaciona, en gran medida, con la falta de bases 
de datos de variables predictoras con escalas espacio-temporal adecuadas. Por otro lado, las técnicas estadísticas más 
complejas no siempre mostraron capacidades predictivas mayores que los RLM y, además, no se encontró un método que 
ofreciese resultados óptimos para todos los índices. SAILD y MAG obtuvieron, por norma general, los mejores resultados, 
sin embrago, consideramos que otros elementos, tales como los recursos computacionales requeridos o la experiencia 

necesaria para aplicar la técnica e interpretar los resultados, deben tenerse en muy en cuenta a la hora de seleccionar el 
método más adecuado.

Palabras clave: Régimen natural de caudales, predicción, regresión múltiple, modelos aditivos generalizados, aprendizaje 
automático
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understanding of this technique over other 
machine learning approaches.

CONCLUSION

The application of four modeling techniques to 
predict 16 environmentally meaningful hydrologi-
cal indices evidenced that all techniques might be 
suitable, since they showed similar prediction 
ability. Nonetheless, the accuracy of complex 
modeling techniques equal to that of more classi-
cal methods may be associated with the low 
number of unaltered gauges used to fit the models. 
Expanding this comparison to larger areas with a 
higher number of unaltered gauges will allow the 
actual potential of the most sophisticated methods 
to be analyzed. ANFIS represented a slight 
improvement over MLR, although the computa-
tional cost and level of knowledge required to 
apply the method and interpret the results may 
limit its application. It is widely accepted that 
machine learning techniques are capable of 
dealing with linear and non-linear relationships. 
Hence, we believe that machine learning 
techniques must be considered when they do not 
entail a significant increase in the required 
resources and the links between hydrological 
indices and predictors can be clearly understood. 

On the other hand, not all hydrological indices 
were predicted with the same accuracy, resulting 
in critical implications and limitations depending 
on the further uses of these predictions. Magni-
tude and frequency indices were generally 
predicted with excellent accuracy, which opens a 
promising window to address several freshwater 
management and ecological issues. In contrast, 
none of the employed techniques allowed precise 
models for timing, duration and rate-of-change 
indices to be developed. Therefore, a major effort 
should be made to improve environmental 
databases in order to provide this climatic, 
geological, edaphological and groundwater infor-
mation on the spatio-temporal scales on which 
flow regime patterns are influenced.

ACKNOWLEDGEMENTS

This study was partly funded by the Spanish 
Ministry of Economy and Competitiveness as 

part of the HYDRA (Ref. BIA2015-71197) and 
RIVERLANDS (Ref. BIA2012-33572) projects. 
Francisco J. Peñas is supported by FONDECYT - 
Concurso postdoctorado etapa 2017 (#3170313). 
We would also like to thank the Confederación 
Hidrográfica del Cantábrico, Confederación 
Hidrográfica del Ebro, Agencia Vasca del Agua, 
Agencia Catalana del Agua and Gobierno de 
Navarra for providing flow series data.

REFERENCES

ALCÁZAR, J., A. PALAU & C. VEGA-GAR-
CIA. 2008. A neural net model for environ-
mental flow estimation at the Ebro River 
Basin, Spain. Journal of Hydrology, 349, 
44-55. DOI: 10.1016/j.jhydrol.2007.10.024 

ALVAREZ-CABRIA, M, F.J. PEÑAS & J. 
BARQUÍN. 2016. Modelling the spatial and 
seasonal variability of water quality for entire 
river networks: Relationships with natural and 
anthropogenic factors. Science of the Total 
Environment, 545-546, 152-162. DOI: 
10.1016/j.scitotenv.2015.12.109

ALVAREZ-CABRIA, M., A.M. GONZÁLEZ-
FERRERAS, F.J. PEÑAS & J. BARQUÍN. 
2017. Modelling macroinvertebrate and fish 
biotic indices: From reaches to entire river 
networks. Science of the Total Environment, 
577, 308-318. DOI: 10.1016/j.scitotenv.2016.
10.186

BEJARANO, M. D., M. MARCHAMALO, D. 
GARCÍA DE JALÓN AND M. GONZÁLEZ 
DEL TÁNAGO. 2010. Flow regime patterns 
and their controlling factors in the Ebro basin 
(Spain), Journal of Hydrology, 385, 323–335, 
DOI: 10.1016/j.jhydrol.2010.03.001, 2010

BOOKER, D. J. & T.H. SNELDER. 2012. Com-
paring methods for estimating flow duration 
curves at ungauged sites. Journal of Hydrolo-
gy, 434, 78-94. DOI: 10.1016/j.jhydrol.2012.
02.031

BREIMAN, L. 2001. Random Forest, Machine 
Learning, 45, 5-32. DOI: 10.1023/A:1010933
404324

CARLISLE, D. M., J. FALCONE, D.M. 
WOLOCK, M.R. MEADOR & R.H. NORRIS. 
2010. Predicting the Natural Flow Regime: 
Models for Assessing Hydrological Alteration 

127-188. Springer-Verlag. New York, INC, 
New York, USA.

OLDEN, J. D., & D.A. JACKSON. 2002a. A 
comparison of statistical approaches for mod-
elling fish species distributions. Freshwater 
Biology, 47, 1976-1995. DOI: 10.1046/j.1365-
2427.2002.00945.x

OLDEN, J. D., & D.A. JACKSON. 2002b. 
Illuminating the "black box": a randomiza-
tion approach for understanding variable 
contributions in artificial neural networks. 
Ecological Modelling, 154, 135-150. DOI: 
10.1016/S0304-3800(02)00064-9 

OLDEN, J. D., & N.L. POFF. 2003. Redundancy 
and the choice of hydrologic indices for char-
acterizing streamflow regimes. River 
Research and Applications, 19, 101-121. 
DOI: 10.1002/rra.700

OUARDA, T., C. GIRARD, G.S. CAVADIAS, 
& B. BOBEE. 2001. Regional flood frequen-
cy estimation with canonical correlation 
analysis. Journal of Hydrology, 254, 157-173. 
DOI: 10.1016/S0022-1694(01)00488-7

PEÑAS, F. J., J. BARQUIN & C. ÁLVAREZ. 
2014. The influence of methodological proce-
dures on hydrological classification perfor-
mance. Hydrology and Earth System Sciences, 
18, 3393-3409. DOI: 10.5194/hess-18-3393-
2014 

POFF, N. L., J.D. ALLAN, M.B. BAIN, J.R. 
KARR, K.L. PRESTEGAARD, B.D. RICH-
TER, B. D., R.E. SPARKS & J.C. 
STROMBERG. 1997. The natural flow 
regime. A paradigm for river conservation 
and restoration. BioScience, 47, 769-784. 
DOI: 10.2307/1313099

POFF, N. L. & J.K.H. ZIMMERMAN. 2010. 
Ecological responses to altered flow regimes: a 
literature review to inform the science and 
management of environmental flows. Freshwa-
ter Biology, 55, 194-205. DOI: 10.1111/j.1365-
2427.2009.02272.x

PRASAD, A. M., L.R. IVERSON & A. LIAW. 
2006. Newer classification and regression tree 
techniques: Bagging and random forests for 
ecological prediction. Ecosystems, 9, 
181-199. DOI: 10.1007/s10021-005-0054-1

REIDY LIERMANN, C.A., J.D. OLDEN, T.J. 
BEECHIE, M.J. KENNARD, P.B.M SKID-

MORE, C.P. KONRAD, & H. IMAKI. 2011. 
Hydrogeomorphic classification of Washing-
ton state rivers to support emerging environ-
mental flow management strategies. River 
Research and Applications, 28 (9), 
1340–1358. DOI: 10.1002/rra.1541

SANBORN, S. C., & B.P. BLEDSOE. 2006. 
Predicting streamflow regime metrics for 
ungauged streams in Colorado, Washington, 
and Oregon. Journal of Hydrology, 325, 
241-261. DOI: 10.1016/j.jhydrol.2005.10.018

SNELDER, T. H., N. LAMOUROUX, J.R. 
LEATHWICK, H. PELLA, E. SAUQUET & 
SHANKAR, U. 2009. Predictive mapping of 
the natural flow regimes of France. Journal 
of Hydrology, 373, 57-67. DOI: 10.1016/j.
jhydrol.2009.04.011

SOLANS, M.A. & A. MELLADO-DÍAZ 2015. A 
landscape-based regionalization of natural flow 
regimes in the Ebro river basin and its biologi-
cal validation. River Research and Applica-
tions, 31: 457–469. DOI: 10.1002/rra.2860

TISSEUIL, C., M. VRAC, S. LEK & A.J. 
WADE. 2010. Statistical downscaling of river 
flows. Journal of Hydrology, 385, 279-291. 
DOI: 10.1016/j.jhydrol.2010.02.030

VAN SICKLE, J., D.D. HUFF & C.P. 
HAWKINS. 2006. Selecting discriminant 
function models for predicting the expected 
richness of aquatic macroinvertebrates. Fresh-
water Biology, 51, 359-372. DOI: 10.1111/j.
1365-2427.2005.01487.x

VENABLES, W. N. & C.M. DICHMONT. 2004. 
GLMs, GAMs and GLMMs: an overview of 
theory for applications in fisheries research. 
Fisheries Research, 70, 319-337. DOI: 
10.1016/j.fishres.2004.08.011 

WOOD, S. N. & N.H. AUGUSTIN. 2002. GAMs 
with integrated model selection using penal-
ized regression splines and applications to 
environmental modelling. Ecological Model-
ling, 157, 157-177. DOI: 10.1016/S0304-
3800(02)00193-X 

YADAV, M., T. WAGENER & H. GUPTA. 
2007. Regionalization of constraints on 
expected watershed response behavior for 
improved predictions in ungauged basins. 
Advances in Water Resources, 30, 1756-1774. 
DOI: 10.1016/j.advwatres.2007.01.005

variety of ecological and earth science variables 
have also highlighted that alternative complex 
techniques did not exhibit great differences in 
their prediction accuracy relative to traditional 
modeling approaches (Manel et al., 1999; Mar-
mion et al., 2008). In contrast, other authors have 
found that complex modeling techniques outper-
formed linear approaches for predicting hydrolog-
ical attributes (Booker & Snelder, 2012; Tisseuil 
et al., 2010), fluvial nutrient load (Marce et al., 
2004) or species distribution (Elith et al., 2006). 
Most of these authors emphasized the high flexi-
bility of non-linear techniques in capturing com-
plex relationships between predictor and response 
variables (Elith et al., 2006). However, when the 
underlying data structure and assumptions are met 
for a particular modeling method (e.g., linearity 
for MLR), the application of complex techniques 
does not necessarily produce significant improve-
ments in model performance (Olden & Jackson, 
2002a). This is the case for the hydrological 
indices of magnitude. However, GAMs, RF and 
ANFIS usually outperformed MLR in indices in 
which linearity was rarely achieved, e.g., pred, 
FRE3, dPhigh, nPos and nNeg (Table 3). It must 
be also stressed that GAMs and ANFIS outper-
formed MLR (>5 %) in five and seven out of eight 
magnitude indices, respectively. GAMs allow for 
both linear and non-linear additive response 
shapes (Hastie & Tibshirani, 1986; Wood & 
Augustin, 2002). Hence, despite the linearity of 
several relationships, GAMs were able to tune the 
response more finely in specific sections where 
relationships were not linear. 

The small gains in predictive performance of 
complex modeling, i.e., machine learning, 
techniques can be attributed to the low number of 
training sites (Kampichler et al., 2010). Since 
machine learning techniques are viewed as 
data-intensive methods and the spatial availability 
of hydrological data sets is typically small, their 
application is limited. In this sense, studies in 
which complex modeling methods outperformed 
linear approaches have presented a number of 
sites on a scale of thousands (e.g., Prasad et al., 
2006), which contrasts with the 156 sites used in 
this work. Therefore, the application of these 
kinds of methods is promising where spatial 
coverage of hydrological data is substantial.  

Beyond the predictive performance of the 
models, other characteristics such as the statistical 
skills needed to develop them and interpret the 
results must be taken into account when selecting 
the optimal modeling technique. For instance, 
ANFIS required the definition of the number and 
shape of MF, and it is recommended (Marcé et al., 
2004) that these processes be carried out through 
an independent cross-validation process, as 
achieved in this work. On the other hand, the 
application of MLR involves complying with the 
assumptions of normality, homoscedasticity, inde-
pendence and linearity, which was accomplished 
through different transformations (Tables 1 and 
2). Given the disparity in the nature of hydrologi-
cal indices and environmental data, no single 
transformation could be applied systematically 
and, as shown here, transformation does not 
always assure compliance with assumptions. In 
contrast, RF was the only fully automated tech-
nique, in which the distribution of the variables 
does not have to comply with any assumption 
(Breiman, 2001), which reduces the time needed 
and facilitates its application by users who are not 
specialists in statistics. Lastly, the ability of each 
technique to identify the actual relationships 
between the hydrological indices and the environ-
mental variables must be taken into account. The 
four techniques agreed in the identification of the 
most important predictors for most of the models. 
However, MLR and GAMs allow straightforward 
relationships between predictors and response 
variables to be set (Manel et al., 1999). In contrast, 
machine learning methods have been largely seen 
as “black boxes.” For instance, the development 
of ANFIS models and the understanding of results 
require substantial time and knowledge, although 
enormous progress has been made in understand-
ing the relationships underlying this technique 
(Marce et al., 2004; Olden & Jackson, 2002b). On 
the other hand, RF results form an ensemble of 
regression trees and may also become a black box 
when interpreting the results (Prasad et al., 2006). 
Nonetheless, the ‘randomForest’ package of R 
statistical software incorporates specific functions 
to numerically and graphically visualize the 
marginal effect of each predictor variable on the 
response (e.g., Alvarez-Cabria et al., 2016). These 
features definitively facilitate the application and 

MA and MH indices is related to their dependence 
on precipitation events and direct catchment 
runoff (Tisseuil et al., 2010). Precipitation 
variables were derived from 1000x1000-m precip-
itation grids and it was demonstrated that they 
were precise enough to produce reliable models. In 
this regard, there are several previous studies that 
have found strong relationships between hydrolog-
ical variables and climatic predictor attributes 
(Carlise et al., 2010: Reidy-Liermann et al., 2011; 
Sanborn & Bledsoe, 2006). For instance, 
Reidy-Lierman et al. (2011) found that spring 
precipitation was the most important variable for 
discriminating rivers dominated by rain, snowmelt 
or mixed rivers. This agreed with our findings that 
Pre4 was among the most important variables for 
predicting flow magnitude, as all these river types 
can be found in this study area (Bejarano et al., 
2010). Moreover, Solans & Poff (2015) and Beja-
rano et al. (2010) found that the segregation of 
river types in the Ebro Basin is largely explained 
by the variability of climatic predictors such as 
temperature, evapotranspiration and precipitation. 
In this regard, the high gradient of EvMx and 
PreSu values that prevails from the oceanic west-
ern part to the eastern Mediterranean sector plays 
a significant role in the discrimination of flow 
magnitudes across the study area.

On the other hand, the errors of ML index 
models have been relatively high. In most 
instances, significant correlations between ML 
indices and soil and geology characteristics have 
been observed in previous works (Clausen & 
Pearson, 1995; Kroll et al., 2004, Lane et al., 
2017). The inclusion of these variables allowed 
prediction performances comparable to those 
showed by MA and MH indices to be obtained 
(Knight et al., 2011; Sanborn & Bledsoe, 2006). 
It is likely that the small contribution of these 
variables in the present study was due to the low 
precision of the geology and soil data rather than 
the lack of causal links. The most detailed soil 
and geology maps in the study area have a 1:200 
000 scale, which contrasts with the accuracy of 
the topography (25x25-m DEM), climatic 
(1000x1000-m grid) and land-use (1:25 000) data 
sources. Thus, we believe that improving soil and 
subsurface geology information should lead to 
improvements in modeling ML indices. 

Regressions carried out elsewhere (Knight et 
al., 2011; Sanborn & Bledsoe, 2006) have encoun-
tered difficulties in accurately predicting frequen-
cy indices, while we were able to predict FRE3 
with a reasonable accuracy. The most important 
predictor variables for FRE3 were ele and pre, 
which agreed with results highlighted in previous 
studies (Carlisle et al., 2010; Knight et al., 2011; 
Ourada et al., 2001). This result is not surprising, 
as the combination of peak flows of nonsynchro-
nous tributaries in the travel of flows downstream, 
i.e. to river segments showing lower elev, has been 
observed to attenuate and dampen flow peaks, 
reducing the number of times a flow overcomes a 
threshold (Naiman et al., 1998; Poff et al., 1997).

However, it must be also pointed out that 
FRE3 takes into account moderate-high flow 
events that usually last several days. The duration 
of these events contrasts with the time scale of the 
commonly available climate database. For 
instance, in our study area only mean monthly 
precipitation series were available, which presum-
ably lacked the proper time scale to characterize 
these events. Hence, the availability of daily 
precipitation data and its inclusion in models simi-
lar to those used in this study could be assumed to 
be highly beneficial for predicting these indices. 

In addition, the lack of proper predictor 
variables has probably been the critical element 
hindering the development of more accurate 
models for the duration, rate-of-change and 
timing indices. For these three groups of hydro-
logical indices, predictor variables derived from 
precipitation series (PreMx, PreMn and MPrRn) 
were the most contributing variables. Given these 
results, it could be speculated that that the wettest 
areas presented longer high-flow and shorter 
low-flow events, along with a higher rate of flow 
rise and fall, than zones where precipitation is 
scarce. However, even if these relationships may 
seem obvious and expected, they cannot be 
assured with certainty due to the low accuracy of 
the obtained models.  

Comparison of modeling techniques

Our analysis demonstrated that there was not an 
optimal technique to predict all hydrological 
indices. Several works focused on modeling a 

RESULTS

Model performance and predictor variables

The results exhibited a wide range of predictive 
performance, with adjusted R2s ranging from 
0.16 (MLR-Pred) to 0.88 (ANFIS-M4 and 
ANFIS-30HF; Table 3). However, all the models 
presented a level of significance p-value<0.01 
when tested against the F statistic hypothesis. 
Model performance was higher when predicting 
the flow magnitude (MA, MH and ML) and 
frequency indices (FH: FRE7) than when predict-
ing the timing (T: JMax; JMin and Pred), dura-
tion (DH: dPHigh and DL: dPLow) and 
rate-of-change (RC: nPos and nNeg) indices 
(K-W chi-squared=57.9, df=7, p-value<0.001; 
Table 3). In addition, for each hydrological index, 
the predictor variables kept the order of impor-
tance regardless of the modeling technique used. 
In this regard, it must be highlighted that, accord-
ing to the Person correlation values, neither of the 
geology variables, Perm and Hard, were selected 
within the set of 6 initial predictor variables. The 
MA (except for M9) and MH indices were 
predicted with excellent accuracy, showing 
adjusted R2s that commonly exceeded 0.8. In 
contrast, models of 30LF and X95 registered 
lower adjusted R2s, which ranged from 15 to 25 
% below those of the MA and MH indices. Are, 
annual (Pre), summer (PreSu) and April precipi-
tation (Pre4) were the most important variables in 
practically all the flow magnitude models, espe-
cially those developed for MA and MH. On the 
other hand, when predicting the M9 and ML 
indices, other environmental variables such as 
gra, EvMx and QPrRn presented high contribu-
tion rates to the models. The timing index models 
presented the lowest predictive performances 
(Table 3). In general, adjusted R2s for the JMax 
and JMin indices were not greater than 0.2, while 
the best model for Pred reached 0.4 (Table 3). Pre 
and MPrRn were selected in all models for Jmax. 
MPrRn, Eva and Ele were commonly included in 
the models for JMin. Pred was related mainly to 
PreMx and Gra. FRE3 was predicted with a max-
imum adjusted R2 of 0.71 (Table 3), and the most 
influential variables were Ele, PrMx and QPrRn. 
Models for predicting dPHigh and dPlow rarely 

reached an adjusted R2 over 0.3, and PrMx and 
PrMn were the most contributing variables, 
respectively (Table 3). Finally, models for nPos 
and nNeg showed adjusted R2s close to 0.5 (Table 
3). Pre, Ele and MPrRn were the most influential 
variables in all of these models. 

Comparison of modeling techniques

Differences in prediction accuracy among the 
different modeling techniques were not large 
(K-W chi-squared=1.44, df=3, p-value=0.7; Table 
3). However, although differences were not signif-
icant, it must be remarked that the GAMs and 
ANFIS techniques outperformed MLR by more 
than 5 % of the adjusted R2 in 10 and 13 hydrolog-
ical indices, respectively. The greatest improve-
ment in the predictive performance of these two 
techniques with respect to MLR was observed for 
the magnitude indices. ANFIS presented a mean 
increase of 7 % in the adjusted R2 compared to 
MLR in all the magnitude indices, but this only 
resulted in marginal differences (K-W 
chi-squared=2.8487, df=1, p-value=0.09). If only 
the MA and MH indices were considered, the 
differences in performance between MLR and 
ANFIS reached up to more than 10%, and signifi-
cant differences were observed (K-W 
chi-squared=5.13, df=1, p-value=0.02). Differ-
ences between MLR and GAMs that resulted in 
improvements in adjusted R2s beyond 5 % were 
found only for the MA and MH indices (WK-W 
chi-squared=6.72, df=1, p-value=0.01). In addi-
tion, ANFIS and GAMs outperformed MLR in 
one or several of the other index types (T, F and 
RC). On the other hand, RF did not show signifi-
cant enhancements in relation to MLR (K-W 
chi-squared=0.017439, df=1, p-value=0.8949). 

DISCUSSION

Model performance and predictor variables

This study confirms the findings of other works 
that not all the hydrological indices present the 
same potential to be predicted (Carlisle et al., 
2010; Yadav et al., 2007). Among the magnitude 
indices, MA and MH outperformed the ML 
indices. The high predictive performance of the 

leaving out one gauge at a time, developing a new 
model based on the remaining 155 observations 
and finally estimating the hydrological index for 
the left-out gauge. The results from this proce-
dure produced estimates of each hydrological 
metric as if the gauging station were an ungauged 
site. The variation between observed and predict-
ed values represents the uncertainty with which 
the model would be applied to predict index 
values at ungauged sites (Carlisle et al., 2010) 
and allows an assessment of the robustness of 
each method for estimating hydrological indices. 

We employed the root-mean-square-deviance 
(RMSD) and the adjusted R2 to assess the corre-
spondence between observed and estimated 
values as a relative performance of each model, 
following other authors (Carlisle et al., 2010; 
Sanborn & Bledsoe, 2006; Van Sickle et al., 
2006). Hence, models producing the lowest 
RMSD and the highest adjusted R2 were deemed 
superior. In addition, we used Kruscal-Wallis to 
test whether the differences in adjusted R2 found 
between the modeled indices and modeling 
techniques were significant.

homogeneous as possible based on series of 
binary rules. RF introduces random variation to 
CARTs by growing a defined number of trees 
with a bootstrap sample of the training data and a 
random sample of the predictors. The importance 
of the predictor variables is evaluated by random-
ly permuting each predictor variable in turn and 
predicting the response of the bootstrap sample 
observations. The decrease in prediction perfor-
mance is the measure of importance of the origi-
nal variable. Non-transformed response or 
predictor variables were used in the RF models.

Adaptive Neuro-Fuzzy Inference System (ANFIS)

ANFIS combines qualitative aspects of human 
knowledge from Fuzzy Inference Systems (FISs) 
with an effective, advanced machine learning 
method (neural networks) to adjust and tune these 
rules (Jang, 1993). 

A FIS is based on fuzzy decision rules and the 
fuzzy reasoning unit (Jang, 1993). The fuzzy 
decision rules (if-then rules) are rules expressed 
in the form “if X (input variable) is A then Y 
(output variable) is B”, where A (premise) and B 
(consequence) are linguistic values (e.g., high 
and low). Fuzzy logic allows, within these 
decision rules, any judgment state to take values 
between 0 and 1 according to its probability. In 
this regard, Membership Functions (MFs) are the 
functions that relate a variable to the probabilities 
associated with the judgment states.  

Fuzzy reasoning is an inference procedure 
used to derive conclusions from a set of fuzzy 
decision rules. The steps of fuzzy reasoning 
performed by a FIS are (Jang, 1993; Marce et al., 
2004):

1. Compare the input variables with the 
MFs in the premise part of the fuzzy rules to 
obtain the probability of each linguistic label 
(fuzzification).

2. Combine (through logic operators) the 
probability in the premise part to get the weight of 
each rule. 

3. Generate the qualified consequent of 
each rule depending on its weight.

4. Aggregate the qualified consequents to 
produce a crisp output (defuzzification). 

Given an input-output problem, the construc-

tion of a FIS has two fundamental steps: the spec-
ification of an appropriate number and type of 
input and output MFs (structure identification) 
and the specification of the shape of the MFs 
(parameter estimation). The structure identifica-
tion was solved by applying a trial-and-error 
procedure and a conservative criterion (i.e., mini-
mum number of parameters in the best fit). More-
over, since the maximum number of parameters 
to be fitted increases exponentially with the 
number of variables and MFs and the total 
number of parameters should not exceed 1/6 the 
number of cases (Marce et al., 2004), a maximum 
of 3 MFs was established.  Once the model struc-
ture, i.e., number of MFs, was defined, we 
estimated the parameters corresponding to each 
MF through the use of a numerical method called 
the Hybrid Learning Method (Marce et al., 2004). 
Specifically, these parameters were defined using 
adaptive neural networks algorithms. To avoid 
overfitting problems during the estimation of 
these parameters, the data set was randomly split 
into a training set (2/3 of the data set) used to fit 
the values and a trial set (1/3 of the data), which 
was not used by the hybrid learning algorithm. 
The splitting procedure was repeated 200 times 
and each time the parameters were adjusted 
individually. The hydrological indices were 
converted to the range (0 1), while the environ-
mental variables were converted to z-scores (i.e., 
mean=0, standard deviation=1) according to 
ANFIS requirements. Finally, to obtain the 
importance of the predictors in each model, envi-
ronmental variables were removed from the 
model one at a time while holding all other 
predictor variables. Then, for each model we 
calculated the predictive performance through the 
adjusted R2. The larger the decrease of predictive 
performance, the greater the assumed importance 
of that variable. 

Validation and evaluation of model perfor-
mance

A jackknife cross–validation procedure was 
performed with R statistical software to test the 
predictive performance of each modeling 
technique for the 16 hydrological indices. This 
cross-validation procedure was applied by 

Environmental variables (predictors)

Several studies have highlighted the importance 
of climate, topography, land cover and geology 
on the hydrological regime regardless of 
geographic location (Kennard et al., 2010; Lane 
et al., 2017; Sanborn & Bledsoe, 2006). Thus, 
environmental variables were used to explain the 
hydrological character of the recorded flow series 
and predict this character in the entire river 
network. A synthetic river network (SRN) was 
delineated using a 25-m digital elevation model 
(DEM) with the NestStream program (Benda et 
al., 2007). The SRN comprised 667 406 segments 
with lengths ranging from 16 to 800 m and was 
used as a spatial network to integrate the hydro-
logical and environmental information. Predictor 
variables were extracted from existing databases 
provided by several national and regional institu-
tions. The predictor variables for each segment 
represented the mean value of the variables in the 
upstream catchment. A set of 19 variables was 
selected (Table 2); detailed information regarding 
the units, scale and sources of information can be 
found in Peñas et al. (2014).

In addition, according to the maximum 
number of degrees of freedom allowed by the 
different techniques, a maximum of 6 predictor 
variables was established for the models. The 
selection of these 6 variables was based on the 
combination of scatter plots (hydrological 
indices versus environmental variables) and 
parametric correlations to identify the environ-
mental variables that were most meaningful for 
the prediction of each dependent variable (Knight 
et al., 2011). In this regard, the Pearson correla-
tion values between the hydrological indices and 
the predictor variables were used as the main 
screening criterion. Hence, for each hydrological 
index, we selected the 6 predictor variables with 
the highest correlation values. 

Modeling Techniques

The predictive performance of 4 distinct 
techniques to model hydrological indices was 
compared in this study. Modeling and statistical 
analysis were performed with R statistical 
software using the stats (v.3.3.2), gam (v.1.14) 

and randomForest (v.4.6 ) packages, except in the 
case of ANFIS models, which were developed 
using functions from the Mathwork´s MATLAB 
Fuzzy Logic Toolbox (FLT) included in a 
MATLAB code programmed by Marcé et al. 
(2004) and adapted by the authors to carry out the 
specific analyses performed in this study. The 
following section briefly describes each of the 
five modeling techniques.

Multiple Linear Regression (MLR)

MLR assumes a linear relationship between the 
predictor and the response variables through the 
estimation of parameters for each predictor. 
Specific transformations (Tables 1 and 2) were 
applied to meet the assumptions (normality, inde-
pendence and homoscedasticity) for applying 
MLR. If data did not meet the assumptions 
through any transformation, that which was 
closest to meeting these requirements was used. 
The relative importance of each variable was 
established based on the comparison of the 
regression test statistic T value. 

Generalized Additive Models (GAMs)

GAMs are semi-parametric models (Hastie & 
Tibshirani, 1986) that relate the predictor and 
dependent variable through a link function and 
estimate a non-parametric function for each 
predictor in order to adapt it to the local behavior 
of the regression function in several regions (Ven-
ables & Dichmont, 2004). The identity link func-
tion of the Gaussian family was applied to the 
transformed variables using the same transforma-
tions as in MLR, given that they were assumed to 
be normally distributed. Thin plate regression 
splines were used with a maximum of 3 degrees of 
freedom. Parallel to MLR, the relative importance 
of each variable was established based in the com-
parison of the regression test statistic T value. 

Random Forest (RF)

RF (Breiman, 2001) comprises an ensemble of 
individual Classification and Regression Trees 
(CARTs). CARTs split the dimensional space 
defined by the predictors into groups that are as 

unaffected by impoundments or significant 
abstraction upstream were selected for analysis. 
In addition, we selected gauges with data avail-
able for the 1976-2010 period and analyzed the 
quality of the series (Peñas et al., 2014). Finally, 
156 gauges were selected, which accounted for an 
average length of 17 years of data (Fig. 1).

It was beyond the scope of this study to 

predict and evaluate all the hydrological indices 
currently in use (see Olden & Poff, 2003); there-
fore, we selected one or several indices represent-
ing each of the five ecologically relevant aspects 
of the flow regime, i.e., magnitude, timing, 
frequency, duration and rate of change (Olden & 
Poff, 2003; Table 1).

tion fittings has been pointed out (Sanborn & 
Bledsoe, 2006). There are many examples of the 
use of other modeling and machine learning 
techniques to model many environmental issues 
(e.g., Alvarez-Cabria et al., 2016; Elith et al., 
2006; Manel et al., 1999, Marcé et al., 2004). In 
contrast, their application in the prediction of 
hydrological indices has been limited, although 
they could provide important benefits in this field 
(Alcázar et al., 2008; Heuvelmans et al., 2006; 
Snelder et al., 2009).

In this study we concentrated on developing 
statistical models for 16 hydrological indices 
covering the 5 ecologically relevant hydrologic 
attributes (i.e., magnitude, timing, frequency, 
duration and rate of change; Poff et al., 1997). We 
used one traditional technique (Multiple Linear 
Regression (MLR) and three more complex 
techniques that apply contrasting rationale to 
model the distribution of the response variable: 
Generalized Additive Models (GAMs), Random 
Forest (RF) and Adaptive Neuro-Fuzzy Inference 
System (ANFIS). Therefore, the objectives of this 
study were to 1) explore the ability of models to 
predict different types of hydrological indices and 
2) compare the performance of 5 modeling 
techniques to predict 16 hydrological indices at 
ungauged sites. 

METHODS

Study Area

The study area comprises the catchments of the 
northern third of the Iberian Peninsula (Fig. 1), 
covering a total area greater than 124 000 km2. It 
includes a heterogeneous set of environmental 
conditions. 

The area draining into the Cantabrian Sea 
encompasses several catchments with drainage 
areas ranging from 30 to 4907 km2, covering a 
total area of 22 000 km2. The rivers are confined 
by the Cantabrian Cordillera, which reaches up to 
2600 m a.s.l. and runs parallel to the coast. Thus, 
they are characterized by high slopes and short 
main stream lengths. The climate varies from 
thermo-temperate Atlantic on the coast to oro- 
and supra-temperate in the inner regions 
(Rivas-Martínez et al., 2004). Precipitation is 

abundant throughout the year with a mean of 
1300 mm/year, with maximum rainfall in Decem-
ber (150 mm/month) and minimum in July (50 
mm/month). Snowfall is frequent in winter above 
1000 m a.s.l. More than 50 % of the surface is 
covered by deciduous forest, scrubs and grass-
lands, while 10 % is occupied by agriculture. 

Meanwhile, the Mediterranean area is mainly 
covered by the Ebro catchment, along with a set 
of medium-sized basins in the east coast. The 
Ebro catchment covers a total area of 85 530 km2. 
It is enclosed by the Cantabrian Mountains and 
the Pyrenees (3400 m a.s.l.) in the north, the Cata-
lan Coastal Chain (1712 m a.s.l.) in the east, and 
from the north-west to the south-east by the 
Iberian massif (2300 m a.s.l.), which creates a 
dense river network in the catchment boundaries 
and an extended flat surface in the interior. This 
area is characterized by a meso-Mediterranean 
and supra-Mediterranean climate (Rivas-Martínez 
et al., 2004), with a mean annual precipitation of 
650 mm, varying from 300 mm in the central area 
of the main fluvial axis to 1700 mm in the Pyre-
nees Mountains, where snow is abundant in 
winter and early spring (Bejarano et al., 2010). 
The precipitation regime in the Mediterranean 
region has its maxima in autumn and spring and 
minima in winter and summer. Agricultural land 
accounts for 50 % of this territory. 

The Catalan catchments comprises several 
catchments ranging from 72 to 5000 km2, cover-
ing a total area of 16 500 km2 that drains directly 
from the Pyrenees or the Catalan Coastal Chain 
to the sea. This area is dominated by the Mediter-
ranean oceanic climate on the coast and a temper-
ate climate in the mountains. Precipitation 
declines from an annual mean of 1200 mm/year at 
the northern river heads to less than 500 mm/year 
in the southern catchments. Coniferous and 
broadleaf forest, scrubs and grasslands occupy 
more than 60 % of the surface in the northern 
catchments, which are progressively replaced by 
agricultural land in the south.

Hydrologic Data and Hydrological Indices

Several Spanish water agencies and regional 
governments provided series of daily mean flow 
measured at 428 gauging stations. Only gauges 

INTRODUCTION

River flow regime is a key element that structures 
freshwater ecosystems (Poff et al., 1997). Indeed, 
the understanding of the bio-physical associations 
between hydrological variability and stream 
biological communities is a critical scientific and 
management challenge (Alvarez-Cabria et al., 
2017). However, it is frequently the case that 
streamflow data are not available at a site of inter-
est such as where biomonitoring is carried out 
(Poff & Zimmerman, 2010; Sanborn & Bledsoe, 
2006). This hinders the exploration of the flow 
regime influence on stream ecology and ultimate-
ly the management of these systems. 

Natural flow regime can be described through 
a collection of ecologically relevant hydrological 
indices (Olden & Poff, 2003). Hence, interest in 

the prediction of these hydrological indices in 
ungauged streams has grown rapidly in recent 
years (Carlisle et al., 2010; Kennen et al., 2008). 
Most of the work has been aimed at addressing 
water yield and flooding issues. Thus, models to 
predict average flows, flood quantiles, flow dura-
tion curves or low-flow parameters dominate the 
literature (Sanborn & Bledsoe, 2006). In contrast, 
prediction of ecologically relevant hydrological 
indices has received limited attention (Carlisle et 
al., 2010; Knight et al., 2011; Sanborn & Bled-
soe, 2006). 

Multiple linear regression has been the most 
commonly used statistical technique to predict 
hydrological indices in ungauged sites (Knight et 
al., 2011). However, the potential improvement 
in model performance when using other modeling 
procedures that do not assume specific distribu-
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ABSTRACT

A comparison of modeling techniques to predict hydrological indices in ungauged rivers

Predicting the natural flow regime in ungauged rivers is an important challenge in water resource management and ecological 
research. We developed models to predict 16 hydrological indices in a river network covering the northern third of the Iberian 
Peninsula. Multiple Linear Regression (MLR), Generalized Additive Models (GAMs), Random Forest (RF) and Adaptive 
Neuro Fuzzy Inference System (ANFIS) were used and compared according to their prediction accuracy. The results showed 
that predictive performance varied greatly depending on the modeled hydrological attribute. The magnitude and frequency 
indices were predicted with excellent accuracy. In contrast, no technique was capable of developing precise models for hydro-
logical indices of timing, duration and rate of change. This is mainly related to the lack of proper environmental databases on 
the scales on which these flow regime patterns are influenced. In addition, complex modeling techniques did not always outper-
form linear models and no single approach was optimal for all indices. ANFIS and GAMs provided the best results; however, 
other issues such as computational cost and the level of knowledge required to apply the method and interpret the results should 
be taken into account.

Key words: natural flow regime, prediction, linear regression, generalized additive models, machine learning

RESUMEN

Comparación de técnicas de modelado para predecir índices hidrológicos en ríos no aforados

La predicción del régimen natural de caudales en ríos no aforados representa un problema esencial para superar los nuevos 
retos a los que se enfrenta la gestión de los recursos hídricos y la ecología de los sistemas de agua dulce. En este trabajo 
hemos desarrollado modelos para predecir 16 índices hidrológicos en la red fluvial que cubre el tercio norte de la Península 
Ibérica. En concreto se han desarrollado y comparado Regresiones Lineales Múltiples (RLM), Modelos Aditivos Generaliza-
dos (MAG), Bosques Aleatorios (BA) y Sistemas Adaptativos de Inferencia de Lógica Difusa (SAILD). Los resultados han 
puesto de manifiesto que la capacidad predictiva varía significativamente dependiendo del tipo de índice hidrológico mode-
lado. Los modelos de los índices de magnitud y frecuencia mostraron una capacidad predictiva excelente. Por el contrario, 
los modelos de los índices hidrológicos relacionados con la temporalidad, la duración de periodos de caudales altos o bajos 
y la tasa de cambio mostraron una capacidad de predicción limitada. Esto se relaciona, en gran medida, con la falta de bases 
de datos de variables predictoras con escalas espacio-temporal adecuadas. Por otro lado, las técnicas estadísticas más 
complejas no siempre mostraron capacidades predictivas mayores que los RLM y, además, no se encontró un método que 
ofreciese resultados óptimos para todos los índices. SAILD y MAG obtuvieron, por norma general, los mejores resultados, 
sin embrago, consideramos que otros elementos, tales como los recursos computacionales requeridos o la experiencia 

necesaria para aplicar la técnica e interpretar los resultados, deben tenerse en muy en cuenta a la hora de seleccionar el 
método más adecuado.

Palabras clave: Régimen natural de caudales, predicción, regresión múltiple, modelos aditivos generalizados, aprendizaje 
automático
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understanding of this technique over other 
machine learning approaches.

CONCLUSION

The application of four modeling techniques to 
predict 16 environmentally meaningful hydrologi-
cal indices evidenced that all techniques might be 
suitable, since they showed similar prediction 
ability. Nonetheless, the accuracy of complex 
modeling techniques equal to that of more classi-
cal methods may be associated with the low 
number of unaltered gauges used to fit the models. 
Expanding this comparison to larger areas with a 
higher number of unaltered gauges will allow the 
actual potential of the most sophisticated methods 
to be analyzed. ANFIS represented a slight 
improvement over MLR, although the computa-
tional cost and level of knowledge required to 
apply the method and interpret the results may 
limit its application. It is widely accepted that 
machine learning techniques are capable of 
dealing with linear and non-linear relationships. 
Hence, we believe that machine learning 
techniques must be considered when they do not 
entail a significant increase in the required 
resources and the links between hydrological 
indices and predictors can be clearly understood. 

On the other hand, not all hydrological indices 
were predicted with the same accuracy, resulting 
in critical implications and limitations depending 
on the further uses of these predictions. Magni-
tude and frequency indices were generally 
predicted with excellent accuracy, which opens a 
promising window to address several freshwater 
management and ecological issues. In contrast, 
none of the employed techniques allowed precise 
models for timing, duration and rate-of-change 
indices to be developed. Therefore, a major effort 
should be made to improve environmental 
databases in order to provide this climatic, 
geological, edaphological and groundwater infor-
mation on the spatio-temporal scales on which 
flow regime patterns are influenced.
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mion et al., 2008). In contrast, other authors have 
found that complex modeling techniques outper-
formed linear approaches for predicting hydrolog-
ical attributes (Booker & Snelder, 2012; Tisseuil 
et al., 2010), fluvial nutrient load (Marce et al., 
2004) or species distribution (Elith et al., 2006). 
Most of these authors emphasized the high flexi-
bility of non-linear techniques in capturing com-
plex relationships between predictor and response 
variables (Elith et al., 2006). However, when the 
underlying data structure and assumptions are met 
for a particular modeling method (e.g., linearity 
for MLR), the application of complex techniques 
does not necessarily produce significant improve-
ments in model performance (Olden & Jackson, 
2002a). This is the case for the hydrological 
indices of magnitude. However, GAMs, RF and 
ANFIS usually outperformed MLR in indices in 
which linearity was rarely achieved, e.g., pred, 
FRE3, dPhigh, nPos and nNeg (Table 3). It must 
be also stressed that GAMs and ANFIS outper-
formed MLR (>5 %) in five and seven out of eight 
magnitude indices, respectively. GAMs allow for 
both linear and non-linear additive response 
shapes (Hastie & Tibshirani, 1986; Wood & 
Augustin, 2002). Hence, despite the linearity of 
several relationships, GAMs were able to tune the 
response more finely in specific sections where 
relationships were not linear. 

The small gains in predictive performance of 
complex modeling, i.e., machine learning, 
techniques can be attributed to the low number of 
training sites (Kampichler et al., 2010). Since 
machine learning techniques are viewed as 
data-intensive methods and the spatial availability 
of hydrological data sets is typically small, their 
application is limited. In this sense, studies in 
which complex modeling methods outperformed 
linear approaches have presented a number of 
sites on a scale of thousands (e.g., Prasad et al., 
2006), which contrasts with the 156 sites used in 
this work. Therefore, the application of these 
kinds of methods is promising where spatial 
coverage of hydrological data is substantial.  

Beyond the predictive performance of the 
models, other characteristics such as the statistical 
skills needed to develop them and interpret the 
results must be taken into account when selecting 
the optimal modeling technique. For instance, 
ANFIS required the definition of the number and 
shape of MF, and it is recommended (Marcé et al., 
2004) that these processes be carried out through 
an independent cross-validation process, as 
achieved in this work. On the other hand, the 
application of MLR involves complying with the 
assumptions of normality, homoscedasticity, inde-
pendence and linearity, which was accomplished 
through different transformations (Tables 1 and 
2). Given the disparity in the nature of hydrologi-
cal indices and environmental data, no single 
transformation could be applied systematically 
and, as shown here, transformation does not 
always assure compliance with assumptions. In 
contrast, RF was the only fully automated tech-
nique, in which the distribution of the variables 
does not have to comply with any assumption 
(Breiman, 2001), which reduces the time needed 
and facilitates its application by users who are not 
specialists in statistics. Lastly, the ability of each 
technique to identify the actual relationships 
between the hydrological indices and the environ-
mental variables must be taken into account. The 
four techniques agreed in the identification of the 
most important predictors for most of the models. 
However, MLR and GAMs allow straightforward 
relationships between predictors and response 
variables to be set (Manel et al., 1999). In contrast, 
machine learning methods have been largely seen 
as “black boxes.” For instance, the development 
of ANFIS models and the understanding of results 
require substantial time and knowledge, although 
enormous progress has been made in understand-
ing the relationships underlying this technique 
(Marce et al., 2004; Olden & Jackson, 2002b). On 
the other hand, RF results form an ensemble of 
regression trees and may also become a black box 
when interpreting the results (Prasad et al., 2006). 
Nonetheless, the ‘randomForest’ package of R 
statistical software incorporates specific functions 
to numerically and graphically visualize the 
marginal effect of each predictor variable on the 
response (e.g., Alvarez-Cabria et al., 2016). These 
features definitively facilitate the application and 

MA and MH indices is related to their dependence 
on precipitation events and direct catchment 
runoff (Tisseuil et al., 2010). Precipitation 
variables were derived from 1000x1000-m precip-
itation grids and it was demonstrated that they 
were precise enough to produce reliable models. In 
this regard, there are several previous studies that 
have found strong relationships between hydrolog-
ical variables and climatic predictor attributes 
(Carlise et al., 2010: Reidy-Liermann et al., 2011; 
Sanborn & Bledsoe, 2006). For instance, 
Reidy-Lierman et al. (2011) found that spring 
precipitation was the most important variable for 
discriminating rivers dominated by rain, snowmelt 
or mixed rivers. This agreed with our findings that 
Pre4 was among the most important variables for 
predicting flow magnitude, as all these river types 
can be found in this study area (Bejarano et al., 
2010). Moreover, Solans & Poff (2015) and Beja-
rano et al. (2010) found that the segregation of 
river types in the Ebro Basin is largely explained 
by the variability of climatic predictors such as 
temperature, evapotranspiration and precipitation. 
In this regard, the high gradient of EvMx and 
PreSu values that prevails from the oceanic west-
ern part to the eastern Mediterranean sector plays 
a significant role in the discrimination of flow 
magnitudes across the study area.

On the other hand, the errors of ML index 
models have been relatively high. In most 
instances, significant correlations between ML 
indices and soil and geology characteristics have 
been observed in previous works (Clausen & 
Pearson, 1995; Kroll et al., 2004, Lane et al., 
2017). The inclusion of these variables allowed 
prediction performances comparable to those 
showed by MA and MH indices to be obtained 
(Knight et al., 2011; Sanborn & Bledsoe, 2006). 
It is likely that the small contribution of these 
variables in the present study was due to the low 
precision of the geology and soil data rather than 
the lack of causal links. The most detailed soil 
and geology maps in the study area have a 1:200 
000 scale, which contrasts with the accuracy of 
the topography (25x25-m DEM), climatic 
(1000x1000-m grid) and land-use (1:25 000) data 
sources. Thus, we believe that improving soil and 
subsurface geology information should lead to 
improvements in modeling ML indices. 

Regressions carried out elsewhere (Knight et 
al., 2011; Sanborn & Bledsoe, 2006) have encoun-
tered difficulties in accurately predicting frequen-
cy indices, while we were able to predict FRE3 
with a reasonable accuracy. The most important 
predictor variables for FRE3 were ele and pre, 
which agreed with results highlighted in previous 
studies (Carlisle et al., 2010; Knight et al., 2011; 
Ourada et al., 2001). This result is not surprising, 
as the combination of peak flows of nonsynchro-
nous tributaries in the travel of flows downstream, 
i.e. to river segments showing lower elev, has been 
observed to attenuate and dampen flow peaks, 
reducing the number of times a flow overcomes a 
threshold (Naiman et al., 1998; Poff et al., 1997).

However, it must be also pointed out that 
FRE3 takes into account moderate-high flow 
events that usually last several days. The duration 
of these events contrasts with the time scale of the 
commonly available climate database. For 
instance, in our study area only mean monthly 
precipitation series were available, which presum-
ably lacked the proper time scale to characterize 
these events. Hence, the availability of daily 
precipitation data and its inclusion in models simi-
lar to those used in this study could be assumed to 
be highly beneficial for predicting these indices. 

In addition, the lack of proper predictor 
variables has probably been the critical element 
hindering the development of more accurate 
models for the duration, rate-of-change and 
timing indices. For these three groups of hydro-
logical indices, predictor variables derived from 
precipitation series (PreMx, PreMn and MPrRn) 
were the most contributing variables. Given these 
results, it could be speculated that that the wettest 
areas presented longer high-flow and shorter 
low-flow events, along with a higher rate of flow 
rise and fall, than zones where precipitation is 
scarce. However, even if these relationships may 
seem obvious and expected, they cannot be 
assured with certainty due to the low accuracy of 
the obtained models.  

Comparison of modeling techniques

Our analysis demonstrated that there was not an 
optimal technique to predict all hydrological 
indices. Several works focused on modeling a 

RESULTS

Model performance and predictor variables

The results exhibited a wide range of predictive 
performance, with adjusted R2s ranging from 
0.16 (MLR-Pred) to 0.88 (ANFIS-M4 and 
ANFIS-30HF; Table 3). However, all the models 
presented a level of significance p-value<0.01 
when tested against the F statistic hypothesis. 
Model performance was higher when predicting 
the flow magnitude (MA, MH and ML) and 
frequency indices (FH: FRE7) than when predict-
ing the timing (T: JMax; JMin and Pred), dura-
tion (DH: dPHigh and DL: dPLow) and 
rate-of-change (RC: nPos and nNeg) indices 
(K-W chi-squared=57.9, df=7, p-value<0.001; 
Table 3). In addition, for each hydrological index, 
the predictor variables kept the order of impor-
tance regardless of the modeling technique used. 
In this regard, it must be highlighted that, accord-
ing to the Person correlation values, neither of the 
geology variables, Perm and Hard, were selected 
within the set of 6 initial predictor variables. The 
MA (except for M9) and MH indices were 
predicted with excellent accuracy, showing 
adjusted R2s that commonly exceeded 0.8. In 
contrast, models of 30LF and X95 registered 
lower adjusted R2s, which ranged from 15 to 25 
% below those of the MA and MH indices. Are, 
annual (Pre), summer (PreSu) and April precipi-
tation (Pre4) were the most important variables in 
practically all the flow magnitude models, espe-
cially those developed for MA and MH. On the 
other hand, when predicting the M9 and ML 
indices, other environmental variables such as 
gra, EvMx and QPrRn presented high contribu-
tion rates to the models. The timing index models 
presented the lowest predictive performances 
(Table 3). In general, adjusted R2s for the JMax 
and JMin indices were not greater than 0.2, while 
the best model for Pred reached 0.4 (Table 3). Pre 
and MPrRn were selected in all models for Jmax. 
MPrRn, Eva and Ele were commonly included in 
the models for JMin. Pred was related mainly to 
PreMx and Gra. FRE3 was predicted with a max-
imum adjusted R2 of 0.71 (Table 3), and the most 
influential variables were Ele, PrMx and QPrRn. 
Models for predicting dPHigh and dPlow rarely 

reached an adjusted R2 over 0.3, and PrMx and 
PrMn were the most contributing variables, 
respectively (Table 3). Finally, models for nPos 
and nNeg showed adjusted R2s close to 0.5 (Table 
3). Pre, Ele and MPrRn were the most influential 
variables in all of these models. 

Comparison of modeling techniques

Differences in prediction accuracy among the 
different modeling techniques were not large 
(K-W chi-squared=1.44, df=3, p-value=0.7; Table 
3). However, although differences were not signif-
icant, it must be remarked that the GAMs and 
ANFIS techniques outperformed MLR by more 
than 5 % of the adjusted R2 in 10 and 13 hydrolog-
ical indices, respectively. The greatest improve-
ment in the predictive performance of these two 
techniques with respect to MLR was observed for 
the magnitude indices. ANFIS presented a mean 
increase of 7 % in the adjusted R2 compared to 
MLR in all the magnitude indices, but this only 
resulted in marginal differences (K-W 
chi-squared=2.8487, df=1, p-value=0.09). If only 
the MA and MH indices were considered, the 
differences in performance between MLR and 
ANFIS reached up to more than 10%, and signifi-
cant differences were observed (K-W 
chi-squared=5.13, df=1, p-value=0.02). Differ-
ences between MLR and GAMs that resulted in 
improvements in adjusted R2s beyond 5 % were 
found only for the MA and MH indices (WK-W 
chi-squared=6.72, df=1, p-value=0.01). In addi-
tion, ANFIS and GAMs outperformed MLR in 
one or several of the other index types (T, F and 
RC). On the other hand, RF did not show signifi-
cant enhancements in relation to MLR (K-W 
chi-squared=0.017439, df=1, p-value=0.8949). 

DISCUSSION

Model performance and predictor variables

This study confirms the findings of other works 
that not all the hydrological indices present the 
same potential to be predicted (Carlisle et al., 
2010; Yadav et al., 2007). Among the magnitude 
indices, MA and MH outperformed the ML 
indices. The high predictive performance of the 

leaving out one gauge at a time, developing a new 
model based on the remaining 155 observations 
and finally estimating the hydrological index for 
the left-out gauge. The results from this proce-
dure produced estimates of each hydrological 
metric as if the gauging station were an ungauged 
site. The variation between observed and predict-
ed values represents the uncertainty with which 
the model would be applied to predict index 
values at ungauged sites (Carlisle et al., 2010) 
and allows an assessment of the robustness of 
each method for estimating hydrological indices. 

We employed the root-mean-square-deviance 
(RMSD) and the adjusted R2 to assess the corre-
spondence between observed and estimated 
values as a relative performance of each model, 
following other authors (Carlisle et al., 2010; 
Sanborn & Bledsoe, 2006; Van Sickle et al., 
2006). Hence, models producing the lowest 
RMSD and the highest adjusted R2 were deemed 
superior. In addition, we used Kruscal-Wallis to 
test whether the differences in adjusted R2 found 
between the modeled indices and modeling 
techniques were significant.

homogeneous as possible based on series of 
binary rules. RF introduces random variation to 
CARTs by growing a defined number of trees 
with a bootstrap sample of the training data and a 
random sample of the predictors. The importance 
of the predictor variables is evaluated by random-
ly permuting each predictor variable in turn and 
predicting the response of the bootstrap sample 
observations. The decrease in prediction perfor-
mance is the measure of importance of the origi-
nal variable. Non-transformed response or 
predictor variables were used in the RF models.

Adaptive Neuro-Fuzzy Inference System (ANFIS)

ANFIS combines qualitative aspects of human 
knowledge from Fuzzy Inference Systems (FISs) 
with an effective, advanced machine learning 
method (neural networks) to adjust and tune these 
rules (Jang, 1993). 

A FIS is based on fuzzy decision rules and the 
fuzzy reasoning unit (Jang, 1993). The fuzzy 
decision rules (if-then rules) are rules expressed 
in the form “if X (input variable) is A then Y 
(output variable) is B”, where A (premise) and B 
(consequence) are linguistic values (e.g., high 
and low). Fuzzy logic allows, within these 
decision rules, any judgment state to take values 
between 0 and 1 according to its probability. In 
this regard, Membership Functions (MFs) are the 
functions that relate a variable to the probabilities 
associated with the judgment states.  

Fuzzy reasoning is an inference procedure 
used to derive conclusions from a set of fuzzy 
decision rules. The steps of fuzzy reasoning 
performed by a FIS are (Jang, 1993; Marce et al., 
2004):

1. Compare the input variables with the 
MFs in the premise part of the fuzzy rules to 
obtain the probability of each linguistic label 
(fuzzification).

2. Combine (through logic operators) the 
probability in the premise part to get the weight of 
each rule. 

3. Generate the qualified consequent of 
each rule depending on its weight.

4. Aggregate the qualified consequents to 
produce a crisp output (defuzzification). 

Given an input-output problem, the construc-

tion of a FIS has two fundamental steps: the spec-
ification of an appropriate number and type of 
input and output MFs (structure identification) 
and the specification of the shape of the MFs 
(parameter estimation). The structure identifica-
tion was solved by applying a trial-and-error 
procedure and a conservative criterion (i.e., mini-
mum number of parameters in the best fit). More-
over, since the maximum number of parameters 
to be fitted increases exponentially with the 
number of variables and MFs and the total 
number of parameters should not exceed 1/6 the 
number of cases (Marce et al., 2004), a maximum 
of 3 MFs was established.  Once the model struc-
ture, i.e., number of MFs, was defined, we 
estimated the parameters corresponding to each 
MF through the use of a numerical method called 
the Hybrid Learning Method (Marce et al., 2004). 
Specifically, these parameters were defined using 
adaptive neural networks algorithms. To avoid 
overfitting problems during the estimation of 
these parameters, the data set was randomly split 
into a training set (2/3 of the data set) used to fit 
the values and a trial set (1/3 of the data), which 
was not used by the hybrid learning algorithm. 
The splitting procedure was repeated 200 times 
and each time the parameters were adjusted 
individually. The hydrological indices were 
converted to the range (0 1), while the environ-
mental variables were converted to z-scores (i.e., 
mean=0, standard deviation=1) according to 
ANFIS requirements. Finally, to obtain the 
importance of the predictors in each model, envi-
ronmental variables were removed from the 
model one at a time while holding all other 
predictor variables. Then, for each model we 
calculated the predictive performance through the 
adjusted R2. The larger the decrease of predictive 
performance, the greater the assumed importance 
of that variable. 

Validation and evaluation of model perfor-
mance

A jackknife cross–validation procedure was 
performed with R statistical software to test the 
predictive performance of each modeling 
technique for the 16 hydrological indices. This 
cross-validation procedure was applied by 

Environmental variables (predictors)

Several studies have highlighted the importance 
of climate, topography, land cover and geology 
on the hydrological regime regardless of 
geographic location (Kennard et al., 2010; Lane 
et al., 2017; Sanborn & Bledsoe, 2006). Thus, 
environmental variables were used to explain the 
hydrological character of the recorded flow series 
and predict this character in the entire river 
network. A synthetic river network (SRN) was 
delineated using a 25-m digital elevation model 
(DEM) with the NestStream program (Benda et 
al., 2007). The SRN comprised 667 406 segments 
with lengths ranging from 16 to 800 m and was 
used as a spatial network to integrate the hydro-
logical and environmental information. Predictor 
variables were extracted from existing databases 
provided by several national and regional institu-
tions. The predictor variables for each segment 
represented the mean value of the variables in the 
upstream catchment. A set of 19 variables was 
selected (Table 2); detailed information regarding 
the units, scale and sources of information can be 
found in Peñas et al. (2014).

In addition, according to the maximum 
number of degrees of freedom allowed by the 
different techniques, a maximum of 6 predictor 
variables was established for the models. The 
selection of these 6 variables was based on the 
combination of scatter plots (hydrological 
indices versus environmental variables) and 
parametric correlations to identify the environ-
mental variables that were most meaningful for 
the prediction of each dependent variable (Knight 
et al., 2011). In this regard, the Pearson correla-
tion values between the hydrological indices and 
the predictor variables were used as the main 
screening criterion. Hence, for each hydrological 
index, we selected the 6 predictor variables with 
the highest correlation values. 

Modeling Techniques

The predictive performance of 4 distinct 
techniques to model hydrological indices was 
compared in this study. Modeling and statistical 
analysis were performed with R statistical 
software using the stats (v.3.3.2), gam (v.1.14) 

and randomForest (v.4.6 ) packages, except in the 
case of ANFIS models, which were developed 
using functions from the Mathwork´s MATLAB 
Fuzzy Logic Toolbox (FLT) included in a 
MATLAB code programmed by Marcé et al. 
(2004) and adapted by the authors to carry out the 
specific analyses performed in this study. The 
following section briefly describes each of the 
five modeling techniques.

Multiple Linear Regression (MLR)

MLR assumes a linear relationship between the 
predictor and the response variables through the 
estimation of parameters for each predictor. 
Specific transformations (Tables 1 and 2) were 
applied to meet the assumptions (normality, inde-
pendence and homoscedasticity) for applying 
MLR. If data did not meet the assumptions 
through any transformation, that which was 
closest to meeting these requirements was used. 
The relative importance of each variable was 
established based on the comparison of the 
regression test statistic T value. 

Generalized Additive Models (GAMs)

GAMs are semi-parametric models (Hastie & 
Tibshirani, 1986) that relate the predictor and 
dependent variable through a link function and 
estimate a non-parametric function for each 
predictor in order to adapt it to the local behavior 
of the regression function in several regions (Ven-
ables & Dichmont, 2004). The identity link func-
tion of the Gaussian family was applied to the 
transformed variables using the same transforma-
tions as in MLR, given that they were assumed to 
be normally distributed. Thin plate regression 
splines were used with a maximum of 3 degrees of 
freedom. Parallel to MLR, the relative importance 
of each variable was established based in the com-
parison of the regression test statistic T value. 

Random Forest (RF)

RF (Breiman, 2001) comprises an ensemble of 
individual Classification and Regression Trees 
(CARTs). CARTs split the dimensional space 
defined by the predictors into groups that are as 

unaffected by impoundments or significant 
abstraction upstream were selected for analysis. 
In addition, we selected gauges with data avail-
able for the 1976-2010 period and analyzed the 
quality of the series (Peñas et al., 2014). Finally, 
156 gauges were selected, which accounted for an 
average length of 17 years of data (Fig. 1).

It was beyond the scope of this study to 

predict and evaluate all the hydrological indices 
currently in use (see Olden & Poff, 2003); there-
fore, we selected one or several indices represent-
ing each of the five ecologically relevant aspects 
of the flow regime, i.e., magnitude, timing, 
frequency, duration and rate of change (Olden & 
Poff, 2003; Table 1).

tion fittings has been pointed out (Sanborn & 
Bledsoe, 2006). There are many examples of the 
use of other modeling and machine learning 
techniques to model many environmental issues 
(e.g., Alvarez-Cabria et al., 2016; Elith et al., 
2006; Manel et al., 1999, Marcé et al., 2004). In 
contrast, their application in the prediction of 
hydrological indices has been limited, although 
they could provide important benefits in this field 
(Alcázar et al., 2008; Heuvelmans et al., 2006; 
Snelder et al., 2009).

In this study we concentrated on developing 
statistical models for 16 hydrological indices 
covering the 5 ecologically relevant hydrologic 
attributes (i.e., magnitude, timing, frequency, 
duration and rate of change; Poff et al., 1997). We 
used one traditional technique (Multiple Linear 
Regression (MLR) and three more complex 
techniques that apply contrasting rationale to 
model the distribution of the response variable: 
Generalized Additive Models (GAMs), Random 
Forest (RF) and Adaptive Neuro-Fuzzy Inference 
System (ANFIS). Therefore, the objectives of this 
study were to 1) explore the ability of models to 
predict different types of hydrological indices and 
2) compare the performance of 5 modeling 
techniques to predict 16 hydrological indices at 
ungauged sites. 

METHODS

Study Area

The study area comprises the catchments of the 
northern third of the Iberian Peninsula (Fig. 1), 
covering a total area greater than 124 000 km2. It 
includes a heterogeneous set of environmental 
conditions. 

The area draining into the Cantabrian Sea 
encompasses several catchments with drainage 
areas ranging from 30 to 4907 km2, covering a 
total area of 22 000 km2. The rivers are confined 
by the Cantabrian Cordillera, which reaches up to 
2600 m a.s.l. and runs parallel to the coast. Thus, 
they are characterized by high slopes and short 
main stream lengths. The climate varies from 
thermo-temperate Atlantic on the coast to oro- 
and supra-temperate in the inner regions 
(Rivas-Martínez et al., 2004). Precipitation is 

abundant throughout the year with a mean of 
1300 mm/year, with maximum rainfall in Decem-
ber (150 mm/month) and minimum in July (50 
mm/month). Snowfall is frequent in winter above 
1000 m a.s.l. More than 50 % of the surface is 
covered by deciduous forest, scrubs and grass-
lands, while 10 % is occupied by agriculture. 

Meanwhile, the Mediterranean area is mainly 
covered by the Ebro catchment, along with a set 
of medium-sized basins in the east coast. The 
Ebro catchment covers a total area of 85 530 km2. 
It is enclosed by the Cantabrian Mountains and 
the Pyrenees (3400 m a.s.l.) in the north, the Cata-
lan Coastal Chain (1712 m a.s.l.) in the east, and 
from the north-west to the south-east by the 
Iberian massif (2300 m a.s.l.), which creates a 
dense river network in the catchment boundaries 
and an extended flat surface in the interior. This 
area is characterized by a meso-Mediterranean 
and supra-Mediterranean climate (Rivas-Martínez 
et al., 2004), with a mean annual precipitation of 
650 mm, varying from 300 mm in the central area 
of the main fluvial axis to 1700 mm in the Pyre-
nees Mountains, where snow is abundant in 
winter and early spring (Bejarano et al., 2010). 
The precipitation regime in the Mediterranean 
region has its maxima in autumn and spring and 
minima in winter and summer. Agricultural land 
accounts for 50 % of this territory. 

The Catalan catchments comprises several 
catchments ranging from 72 to 5000 km2, cover-
ing a total area of 16 500 km2 that drains directly 
from the Pyrenees or the Catalan Coastal Chain 
to the sea. This area is dominated by the Mediter-
ranean oceanic climate on the coast and a temper-
ate climate in the mountains. Precipitation 
declines from an annual mean of 1200 mm/year at 
the northern river heads to less than 500 mm/year 
in the southern catchments. Coniferous and 
broadleaf forest, scrubs and grasslands occupy 
more than 60 % of the surface in the northern 
catchments, which are progressively replaced by 
agricultural land in the south.

Hydrologic Data and Hydrological Indices

Several Spanish water agencies and regional 
governments provided series of daily mean flow 
measured at 428 gauging stations. Only gauges 

INTRODUCTION

River flow regime is a key element that structures 
freshwater ecosystems (Poff et al., 1997). Indeed, 
the understanding of the bio-physical associations 
between hydrological variability and stream 
biological communities is a critical scientific and 
management challenge (Alvarez-Cabria et al., 
2017). However, it is frequently the case that 
streamflow data are not available at a site of inter-
est such as where biomonitoring is carried out 
(Poff & Zimmerman, 2010; Sanborn & Bledsoe, 
2006). This hinders the exploration of the flow 
regime influence on stream ecology and ultimate-
ly the management of these systems. 

Natural flow regime can be described through 
a collection of ecologically relevant hydrological 
indices (Olden & Poff, 2003). Hence, interest in 

the prediction of these hydrological indices in 
ungauged streams has grown rapidly in recent 
years (Carlisle et al., 2010; Kennen et al., 2008). 
Most of the work has been aimed at addressing 
water yield and flooding issues. Thus, models to 
predict average flows, flood quantiles, flow dura-
tion curves or low-flow parameters dominate the 
literature (Sanborn & Bledsoe, 2006). In contrast, 
prediction of ecologically relevant hydrological 
indices has received limited attention (Carlisle et 
al., 2010; Knight et al., 2011; Sanborn & Bled-
soe, 2006). 

Multiple linear regression has been the most 
commonly used statistical technique to predict 
hydrological indices in ungauged sites (Knight et 
al., 2011). However, the potential improvement 
in model performance when using other modeling 
procedures that do not assume specific distribu-

Table 1.   Hydrological indices for which models were developed and their type of hydrological attribute (MA: Magnitude Average; 
MH: Magnitude High; ML: Magnitude Low; T: Timing; F: Frequency; DH: Duration of high-flow events; DL: Duration of low-flow 
periods; RC: Rate of change). Non-compliance with the MLR assumptions is indicated by the following superscripts: n: normality; h: 
homoscedasticity; i: independence. Índices hidrológicos modelados y el tipo de atributo al que hacen referencia (MA: Magnitud 
media; MH: Magnitud Altos; ML: Magnitud Bajos; T: Temporalidad; F: Frecuencia; DH: Duración de eventos de caudal alto; DL: 
Duración de periodos de caudal bajo; RC: Tasa de cambio). Se indica el no cumplimiento de las asunciones de MLR mediante los 
superíndices: n: normalidad, h: homocedasticidad; i: independencia.

Index Type Units Description
MLR

transformation

L1 MA m3/s Linear moment that represents 
the mean daily annual flow x1/5

L2 MA m3/s
Linear moment that represents 
the variance of the daily annual 
flow.

x1/5 n

M4 MA m3/s Mean daily April flow x1/5 n

M9 MA m3/s Mean daily September flow x1/5

30LF ML m3/s Magnitude of minimum annual 
flow of 30-day duration. x1/6 n

X95 ML m3/s Mean magnitude of flow 
exceeded 95% of the time x1/4

30HF MH m3/s Magnitude of maxima annual 
flow of 30-day duration x1/5

X5 MH m3/s Mean magnitude of flow 
exceeded 5% of the time x1/6 n

Jmax T Day of year Julian day of annual maximum None

Jmin T Day of year Julian day of annual minimum None

Pred T Predictability log(x+1) n, h

FRE3 F Events/year

Number of high-flow events per 
year using an upper threshold of 3 
times the median flow over all 
years

None

dPHigh DH Days Duration of high-flow pulses log(x+1) n, h

dPLow DL Days Duration of low-flow pulses x1/6

nPos RC Days Number of days with increasing 
flow log(x+1)

nNeg RC Days Number of days with decreasing 
flow none
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understanding of this technique over other 
machine learning approaches.

CONCLUSION

The application of four modeling techniques to 
predict 16 environmentally meaningful hydrologi-
cal indices evidenced that all techniques might be 
suitable, since they showed similar prediction 
ability. Nonetheless, the accuracy of complex 
modeling techniques equal to that of more classi-
cal methods may be associated with the low 
number of unaltered gauges used to fit the models. 
Expanding this comparison to larger areas with a 
higher number of unaltered gauges will allow the 
actual potential of the most sophisticated methods 
to be analyzed. ANFIS represented a slight 
improvement over MLR, although the computa-
tional cost and level of knowledge required to 
apply the method and interpret the results may 
limit its application. It is widely accepted that 
machine learning techniques are capable of 
dealing with linear and non-linear relationships. 
Hence, we believe that machine learning 
techniques must be considered when they do not 
entail a significant increase in the required 
resources and the links between hydrological 
indices and predictors can be clearly understood. 

On the other hand, not all hydrological indices 
were predicted with the same accuracy, resulting 
in critical implications and limitations depending 
on the further uses of these predictions. Magni-
tude and frequency indices were generally 
predicted with excellent accuracy, which opens a 
promising window to address several freshwater 
management and ecological issues. In contrast, 
none of the employed techniques allowed precise 
models for timing, duration and rate-of-change 
indices to be developed. Therefore, a major effort 
should be made to improve environmental 
databases in order to provide this climatic, 
geological, edaphological and groundwater infor-
mation on the spatio-temporal scales on which 
flow regime patterns are influenced.
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variety of ecological and earth science variables 
have also highlighted that alternative complex 
techniques did not exhibit great differences in 
their prediction accuracy relative to traditional 
modeling approaches (Manel et al., 1999; Mar-
mion et al., 2008). In contrast, other authors have 
found that complex modeling techniques outper-
formed linear approaches for predicting hydrolog-
ical attributes (Booker & Snelder, 2012; Tisseuil 
et al., 2010), fluvial nutrient load (Marce et al., 
2004) or species distribution (Elith et al., 2006). 
Most of these authors emphasized the high flexi-
bility of non-linear techniques in capturing com-
plex relationships between predictor and response 
variables (Elith et al., 2006). However, when the 
underlying data structure and assumptions are met 
for a particular modeling method (e.g., linearity 
for MLR), the application of complex techniques 
does not necessarily produce significant improve-
ments in model performance (Olden & Jackson, 
2002a). This is the case for the hydrological 
indices of magnitude. However, GAMs, RF and 
ANFIS usually outperformed MLR in indices in 
which linearity was rarely achieved, e.g., pred, 
FRE3, dPhigh, nPos and nNeg (Table 3). It must 
be also stressed that GAMs and ANFIS outper-
formed MLR (>5 %) in five and seven out of eight 
magnitude indices, respectively. GAMs allow for 
both linear and non-linear additive response 
shapes (Hastie & Tibshirani, 1986; Wood & 
Augustin, 2002). Hence, despite the linearity of 
several relationships, GAMs were able to tune the 
response more finely in specific sections where 
relationships were not linear. 

The small gains in predictive performance of 
complex modeling, i.e., machine learning, 
techniques can be attributed to the low number of 
training sites (Kampichler et al., 2010). Since 
machine learning techniques are viewed as 
data-intensive methods and the spatial availability 
of hydrological data sets is typically small, their 
application is limited. In this sense, studies in 
which complex modeling methods outperformed 
linear approaches have presented a number of 
sites on a scale of thousands (e.g., Prasad et al., 
2006), which contrasts with the 156 sites used in 
this work. Therefore, the application of these 
kinds of methods is promising where spatial 
coverage of hydrological data is substantial.  

Beyond the predictive performance of the 
models, other characteristics such as the statistical 
skills needed to develop them and interpret the 
results must be taken into account when selecting 
the optimal modeling technique. For instance, 
ANFIS required the definition of the number and 
shape of MF, and it is recommended (Marcé et al., 
2004) that these processes be carried out through 
an independent cross-validation process, as 
achieved in this work. On the other hand, the 
application of MLR involves complying with the 
assumptions of normality, homoscedasticity, inde-
pendence and linearity, which was accomplished 
through different transformations (Tables 1 and 
2). Given the disparity in the nature of hydrologi-
cal indices and environmental data, no single 
transformation could be applied systematically 
and, as shown here, transformation does not 
always assure compliance with assumptions. In 
contrast, RF was the only fully automated tech-
nique, in which the distribution of the variables 
does not have to comply with any assumption 
(Breiman, 2001), which reduces the time needed 
and facilitates its application by users who are not 
specialists in statistics. Lastly, the ability of each 
technique to identify the actual relationships 
between the hydrological indices and the environ-
mental variables must be taken into account. The 
four techniques agreed in the identification of the 
most important predictors for most of the models. 
However, MLR and GAMs allow straightforward 
relationships between predictors and response 
variables to be set (Manel et al., 1999). In contrast, 
machine learning methods have been largely seen 
as “black boxes.” For instance, the development 
of ANFIS models and the understanding of results 
require substantial time and knowledge, although 
enormous progress has been made in understand-
ing the relationships underlying this technique 
(Marce et al., 2004; Olden & Jackson, 2002b). On 
the other hand, RF results form an ensemble of 
regression trees and may also become a black box 
when interpreting the results (Prasad et al., 2006). 
Nonetheless, the ‘randomForest’ package of R 
statistical software incorporates specific functions 
to numerically and graphically visualize the 
marginal effect of each predictor variable on the 
response (e.g., Alvarez-Cabria et al., 2016). These 
features definitively facilitate the application and 

MA and MH indices is related to their dependence 
on precipitation events and direct catchment 
runoff (Tisseuil et al., 2010). Precipitation 
variables were derived from 1000x1000-m precip-
itation grids and it was demonstrated that they 
were precise enough to produce reliable models. In 
this regard, there are several previous studies that 
have found strong relationships between hydrolog-
ical variables and climatic predictor attributes 
(Carlise et al., 2010: Reidy-Liermann et al., 2011; 
Sanborn & Bledsoe, 2006). For instance, 
Reidy-Lierman et al. (2011) found that spring 
precipitation was the most important variable for 
discriminating rivers dominated by rain, snowmelt 
or mixed rivers. This agreed with our findings that 
Pre4 was among the most important variables for 
predicting flow magnitude, as all these river types 
can be found in this study area (Bejarano et al., 
2010). Moreover, Solans & Poff (2015) and Beja-
rano et al. (2010) found that the segregation of 
river types in the Ebro Basin is largely explained 
by the variability of climatic predictors such as 
temperature, evapotranspiration and precipitation. 
In this regard, the high gradient of EvMx and 
PreSu values that prevails from the oceanic west-
ern part to the eastern Mediterranean sector plays 
a significant role in the discrimination of flow 
magnitudes across the study area.

On the other hand, the errors of ML index 
models have been relatively high. In most 
instances, significant correlations between ML 
indices and soil and geology characteristics have 
been observed in previous works (Clausen & 
Pearson, 1995; Kroll et al., 2004, Lane et al., 
2017). The inclusion of these variables allowed 
prediction performances comparable to those 
showed by MA and MH indices to be obtained 
(Knight et al., 2011; Sanborn & Bledsoe, 2006). 
It is likely that the small contribution of these 
variables in the present study was due to the low 
precision of the geology and soil data rather than 
the lack of causal links. The most detailed soil 
and geology maps in the study area have a 1:200 
000 scale, which contrasts with the accuracy of 
the topography (25x25-m DEM), climatic 
(1000x1000-m grid) and land-use (1:25 000) data 
sources. Thus, we believe that improving soil and 
subsurface geology information should lead to 
improvements in modeling ML indices. 

Regressions carried out elsewhere (Knight et 
al., 2011; Sanborn & Bledsoe, 2006) have encoun-
tered difficulties in accurately predicting frequen-
cy indices, while we were able to predict FRE3 
with a reasonable accuracy. The most important 
predictor variables for FRE3 were ele and pre, 
which agreed with results highlighted in previous 
studies (Carlisle et al., 2010; Knight et al., 2011; 
Ourada et al., 2001). This result is not surprising, 
as the combination of peak flows of nonsynchro-
nous tributaries in the travel of flows downstream, 
i.e. to river segments showing lower elev, has been 
observed to attenuate and dampen flow peaks, 
reducing the number of times a flow overcomes a 
threshold (Naiman et al., 1998; Poff et al., 1997).

However, it must be also pointed out that 
FRE3 takes into account moderate-high flow 
events that usually last several days. The duration 
of these events contrasts with the time scale of the 
commonly available climate database. For 
instance, in our study area only mean monthly 
precipitation series were available, which presum-
ably lacked the proper time scale to characterize 
these events. Hence, the availability of daily 
precipitation data and its inclusion in models simi-
lar to those used in this study could be assumed to 
be highly beneficial for predicting these indices. 

In addition, the lack of proper predictor 
variables has probably been the critical element 
hindering the development of more accurate 
models for the duration, rate-of-change and 
timing indices. For these three groups of hydro-
logical indices, predictor variables derived from 
precipitation series (PreMx, PreMn and MPrRn) 
were the most contributing variables. Given these 
results, it could be speculated that that the wettest 
areas presented longer high-flow and shorter 
low-flow events, along with a higher rate of flow 
rise and fall, than zones where precipitation is 
scarce. However, even if these relationships may 
seem obvious and expected, they cannot be 
assured with certainty due to the low accuracy of 
the obtained models.  

Comparison of modeling techniques

Our analysis demonstrated that there was not an 
optimal technique to predict all hydrological 
indices. Several works focused on modeling a 

RESULTS

Model performance and predictor variables

The results exhibited a wide range of predictive 
performance, with adjusted R2s ranging from 
0.16 (MLR-Pred) to 0.88 (ANFIS-M4 and 
ANFIS-30HF; Table 3). However, all the models 
presented a level of significance p-value<0.01 
when tested against the F statistic hypothesis. 
Model performance was higher when predicting 
the flow magnitude (MA, MH and ML) and 
frequency indices (FH: FRE7) than when predict-
ing the timing (T: JMax; JMin and Pred), dura-
tion (DH: dPHigh and DL: dPLow) and 
rate-of-change (RC: nPos and nNeg) indices 
(K-W chi-squared=57.9, df=7, p-value<0.001; 
Table 3). In addition, for each hydrological index, 
the predictor variables kept the order of impor-
tance regardless of the modeling technique used. 
In this regard, it must be highlighted that, accord-
ing to the Person correlation values, neither of the 
geology variables, Perm and Hard, were selected 
within the set of 6 initial predictor variables. The 
MA (except for M9) and MH indices were 
predicted with excellent accuracy, showing 
adjusted R2s that commonly exceeded 0.8. In 
contrast, models of 30LF and X95 registered 
lower adjusted R2s, which ranged from 15 to 25 
% below those of the MA and MH indices. Are, 
annual (Pre), summer (PreSu) and April precipi-
tation (Pre4) were the most important variables in 
practically all the flow magnitude models, espe-
cially those developed for MA and MH. On the 
other hand, when predicting the M9 and ML 
indices, other environmental variables such as 
gra, EvMx and QPrRn presented high contribu-
tion rates to the models. The timing index models 
presented the lowest predictive performances 
(Table 3). In general, adjusted R2s for the JMax 
and JMin indices were not greater than 0.2, while 
the best model for Pred reached 0.4 (Table 3). Pre 
and MPrRn were selected in all models for Jmax. 
MPrRn, Eva and Ele were commonly included in 
the models for JMin. Pred was related mainly to 
PreMx and Gra. FRE3 was predicted with a max-
imum adjusted R2 of 0.71 (Table 3), and the most 
influential variables were Ele, PrMx and QPrRn. 
Models for predicting dPHigh and dPlow rarely 

reached an adjusted R2 over 0.3, and PrMx and 
PrMn were the most contributing variables, 
respectively (Table 3). Finally, models for nPos 
and nNeg showed adjusted R2s close to 0.5 (Table 
3). Pre, Ele and MPrRn were the most influential 
variables in all of these models. 

Comparison of modeling techniques

Differences in prediction accuracy among the 
different modeling techniques were not large 
(K-W chi-squared=1.44, df=3, p-value=0.7; Table 
3). However, although differences were not signif-
icant, it must be remarked that the GAMs and 
ANFIS techniques outperformed MLR by more 
than 5 % of the adjusted R2 in 10 and 13 hydrolog-
ical indices, respectively. The greatest improve-
ment in the predictive performance of these two 
techniques with respect to MLR was observed for 
the magnitude indices. ANFIS presented a mean 
increase of 7 % in the adjusted R2 compared to 
MLR in all the magnitude indices, but this only 
resulted in marginal differences (K-W 
chi-squared=2.8487, df=1, p-value=0.09). If only 
the MA and MH indices were considered, the 
differences in performance between MLR and 
ANFIS reached up to more than 10%, and signifi-
cant differences were observed (K-W 
chi-squared=5.13, df=1, p-value=0.02). Differ-
ences between MLR and GAMs that resulted in 
improvements in adjusted R2s beyond 5 % were 
found only for the MA and MH indices (WK-W 
chi-squared=6.72, df=1, p-value=0.01). In addi-
tion, ANFIS and GAMs outperformed MLR in 
one or several of the other index types (T, F and 
RC). On the other hand, RF did not show signifi-
cant enhancements in relation to MLR (K-W 
chi-squared=0.017439, df=1, p-value=0.8949). 

DISCUSSION

Model performance and predictor variables

This study confirms the findings of other works 
that not all the hydrological indices present the 
same potential to be predicted (Carlisle et al., 
2010; Yadav et al., 2007). Among the magnitude 
indices, MA and MH outperformed the ML 
indices. The high predictive performance of the 

leaving out one gauge at a time, developing a new 
model based on the remaining 155 observations 
and finally estimating the hydrological index for 
the left-out gauge. The results from this proce-
dure produced estimates of each hydrological 
metric as if the gauging station were an ungauged 
site. The variation between observed and predict-
ed values represents the uncertainty with which 
the model would be applied to predict index 
values at ungauged sites (Carlisle et al., 2010) 
and allows an assessment of the robustness of 
each method for estimating hydrological indices. 

We employed the root-mean-square-deviance 
(RMSD) and the adjusted R2 to assess the corre-
spondence between observed and estimated 
values as a relative performance of each model, 
following other authors (Carlisle et al., 2010; 
Sanborn & Bledsoe, 2006; Van Sickle et al., 
2006). Hence, models producing the lowest 
RMSD and the highest adjusted R2 were deemed 
superior. In addition, we used Kruscal-Wallis to 
test whether the differences in adjusted R2 found 
between the modeled indices and modeling 
techniques were significant.

homogeneous as possible based on series of 
binary rules. RF introduces random variation to 
CARTs by growing a defined number of trees 
with a bootstrap sample of the training data and a 
random sample of the predictors. The importance 
of the predictor variables is evaluated by random-
ly permuting each predictor variable in turn and 
predicting the response of the bootstrap sample 
observations. The decrease in prediction perfor-
mance is the measure of importance of the origi-
nal variable. Non-transformed response or 
predictor variables were used in the RF models.

Adaptive Neuro-Fuzzy Inference System (ANFIS)

ANFIS combines qualitative aspects of human 
knowledge from Fuzzy Inference Systems (FISs) 
with an effective, advanced machine learning 
method (neural networks) to adjust and tune these 
rules (Jang, 1993). 

A FIS is based on fuzzy decision rules and the 
fuzzy reasoning unit (Jang, 1993). The fuzzy 
decision rules (if-then rules) are rules expressed 
in the form “if X (input variable) is A then Y 
(output variable) is B”, where A (premise) and B 
(consequence) are linguistic values (e.g., high 
and low). Fuzzy logic allows, within these 
decision rules, any judgment state to take values 
between 0 and 1 according to its probability. In 
this regard, Membership Functions (MFs) are the 
functions that relate a variable to the probabilities 
associated with the judgment states.  

Fuzzy reasoning is an inference procedure 
used to derive conclusions from a set of fuzzy 
decision rules. The steps of fuzzy reasoning 
performed by a FIS are (Jang, 1993; Marce et al., 
2004):

1. Compare the input variables with the 
MFs in the premise part of the fuzzy rules to 
obtain the probability of each linguistic label 
(fuzzification).

2. Combine (through logic operators) the 
probability in the premise part to get the weight of 
each rule. 

3. Generate the qualified consequent of 
each rule depending on its weight.

4. Aggregate the qualified consequents to 
produce a crisp output (defuzzification). 

Given an input-output problem, the construc-

tion of a FIS has two fundamental steps: the spec-
ification of an appropriate number and type of 
input and output MFs (structure identification) 
and the specification of the shape of the MFs 
(parameter estimation). The structure identifica-
tion was solved by applying a trial-and-error 
procedure and a conservative criterion (i.e., mini-
mum number of parameters in the best fit). More-
over, since the maximum number of parameters 
to be fitted increases exponentially with the 
number of variables and MFs and the total 
number of parameters should not exceed 1/6 the 
number of cases (Marce et al., 2004), a maximum 
of 3 MFs was established.  Once the model struc-
ture, i.e., number of MFs, was defined, we 
estimated the parameters corresponding to each 
MF through the use of a numerical method called 
the Hybrid Learning Method (Marce et al., 2004). 
Specifically, these parameters were defined using 
adaptive neural networks algorithms. To avoid 
overfitting problems during the estimation of 
these parameters, the data set was randomly split 
into a training set (2/3 of the data set) used to fit 
the values and a trial set (1/3 of the data), which 
was not used by the hybrid learning algorithm. 
The splitting procedure was repeated 200 times 
and each time the parameters were adjusted 
individually. The hydrological indices were 
converted to the range (0 1), while the environ-
mental variables were converted to z-scores (i.e., 
mean=0, standard deviation=1) according to 
ANFIS requirements. Finally, to obtain the 
importance of the predictors in each model, envi-
ronmental variables were removed from the 
model one at a time while holding all other 
predictor variables. Then, for each model we 
calculated the predictive performance through the 
adjusted R2. The larger the decrease of predictive 
performance, the greater the assumed importance 
of that variable. 

Validation and evaluation of model perfor-
mance

A jackknife cross–validation procedure was 
performed with R statistical software to test the 
predictive performance of each modeling 
technique for the 16 hydrological indices. This 
cross-validation procedure was applied by 

Environmental variables (predictors)

Several studies have highlighted the importance 
of climate, topography, land cover and geology 
on the hydrological regime regardless of 
geographic location (Kennard et al., 2010; Lane 
et al., 2017; Sanborn & Bledsoe, 2006). Thus, 
environmental variables were used to explain the 
hydrological character of the recorded flow series 
and predict this character in the entire river 
network. A synthetic river network (SRN) was 
delineated using a 25-m digital elevation model 
(DEM) with the NestStream program (Benda et 
al., 2007). The SRN comprised 667 406 segments 
with lengths ranging from 16 to 800 m and was 
used as a spatial network to integrate the hydro-
logical and environmental information. Predictor 
variables were extracted from existing databases 
provided by several national and regional institu-
tions. The predictor variables for each segment 
represented the mean value of the variables in the 
upstream catchment. A set of 19 variables was 
selected (Table 2); detailed information regarding 
the units, scale and sources of information can be 
found in Peñas et al. (2014).

In addition, according to the maximum 
number of degrees of freedom allowed by the 
different techniques, a maximum of 6 predictor 
variables was established for the models. The 
selection of these 6 variables was based on the 
combination of scatter plots (hydrological 
indices versus environmental variables) and 
parametric correlations to identify the environ-
mental variables that were most meaningful for 
the prediction of each dependent variable (Knight 
et al., 2011). In this regard, the Pearson correla-
tion values between the hydrological indices and 
the predictor variables were used as the main 
screening criterion. Hence, for each hydrological 
index, we selected the 6 predictor variables with 
the highest correlation values. 

Modeling Techniques

The predictive performance of 4 distinct 
techniques to model hydrological indices was 
compared in this study. Modeling and statistical 
analysis were performed with R statistical 
software using the stats (v.3.3.2), gam (v.1.14) 

and randomForest (v.4.6 ) packages, except in the 
case of ANFIS models, which were developed 
using functions from the Mathwork´s MATLAB 
Fuzzy Logic Toolbox (FLT) included in a 
MATLAB code programmed by Marcé et al. 
(2004) and adapted by the authors to carry out the 
specific analyses performed in this study. The 
following section briefly describes each of the 
five modeling techniques.

Multiple Linear Regression (MLR)

MLR assumes a linear relationship between the 
predictor and the response variables through the 
estimation of parameters for each predictor. 
Specific transformations (Tables 1 and 2) were 
applied to meet the assumptions (normality, inde-
pendence and homoscedasticity) for applying 
MLR. If data did not meet the assumptions 
through any transformation, that which was 
closest to meeting these requirements was used. 
The relative importance of each variable was 
established based on the comparison of the 
regression test statistic T value. 

Generalized Additive Models (GAMs)

GAMs are semi-parametric models (Hastie & 
Tibshirani, 1986) that relate the predictor and 
dependent variable through a link function and 
estimate a non-parametric function for each 
predictor in order to adapt it to the local behavior 
of the regression function in several regions (Ven-
ables & Dichmont, 2004). The identity link func-
tion of the Gaussian family was applied to the 
transformed variables using the same transforma-
tions as in MLR, given that they were assumed to 
be normally distributed. Thin plate regression 
splines were used with a maximum of 3 degrees of 
freedom. Parallel to MLR, the relative importance 
of each variable was established based in the com-
parison of the regression test statistic T value. 

Random Forest (RF)

RF (Breiman, 2001) comprises an ensemble of 
individual Classification and Regression Trees 
(CARTs). CARTs split the dimensional space 
defined by the predictors into groups that are as 

unaffected by impoundments or significant 
abstraction upstream were selected for analysis. 
In addition, we selected gauges with data avail-
able for the 1976-2010 period and analyzed the 
quality of the series (Peñas et al., 2014). Finally, 
156 gauges were selected, which accounted for an 
average length of 17 years of data (Fig. 1).

It was beyond the scope of this study to 

predict and evaluate all the hydrological indices 
currently in use (see Olden & Poff, 2003); there-
fore, we selected one or several indices represent-
ing each of the five ecologically relevant aspects 
of the flow regime, i.e., magnitude, timing, 
frequency, duration and rate of change (Olden & 
Poff, 2003; Table 1).

tion fittings has been pointed out (Sanborn & 
Bledsoe, 2006). There are many examples of the 
use of other modeling and machine learning 
techniques to model many environmental issues 
(e.g., Alvarez-Cabria et al., 2016; Elith et al., 
2006; Manel et al., 1999, Marcé et al., 2004). In 
contrast, their application in the prediction of 
hydrological indices has been limited, although 
they could provide important benefits in this field 
(Alcázar et al., 2008; Heuvelmans et al., 2006; 
Snelder et al., 2009).

In this study we concentrated on developing 
statistical models for 16 hydrological indices 
covering the 5 ecologically relevant hydrologic 
attributes (i.e., magnitude, timing, frequency, 
duration and rate of change; Poff et al., 1997). We 
used one traditional technique (Multiple Linear 
Regression (MLR) and three more complex 
techniques that apply contrasting rationale to 
model the distribution of the response variable: 
Generalized Additive Models (GAMs), Random 
Forest (RF) and Adaptive Neuro-Fuzzy Inference 
System (ANFIS). Therefore, the objectives of this 
study were to 1) explore the ability of models to 
predict different types of hydrological indices and 
2) compare the performance of 5 modeling 
techniques to predict 16 hydrological indices at 
ungauged sites. 

METHODS

Study Area

The study area comprises the catchments of the 
northern third of the Iberian Peninsula (Fig. 1), 
covering a total area greater than 124 000 km2. It 
includes a heterogeneous set of environmental 
conditions. 

The area draining into the Cantabrian Sea 
encompasses several catchments with drainage 
areas ranging from 30 to 4907 km2, covering a 
total area of 22 000 km2. The rivers are confined 
by the Cantabrian Cordillera, which reaches up to 
2600 m a.s.l. and runs parallel to the coast. Thus, 
they are characterized by high slopes and short 
main stream lengths. The climate varies from 
thermo-temperate Atlantic on the coast to oro- 
and supra-temperate in the inner regions 
(Rivas-Martínez et al., 2004). Precipitation is 

abundant throughout the year with a mean of 
1300 mm/year, with maximum rainfall in Decem-
ber (150 mm/month) and minimum in July (50 
mm/month). Snowfall is frequent in winter above 
1000 m a.s.l. More than 50 % of the surface is 
covered by deciduous forest, scrubs and grass-
lands, while 10 % is occupied by agriculture. 

Meanwhile, the Mediterranean area is mainly 
covered by the Ebro catchment, along with a set 
of medium-sized basins in the east coast. The 
Ebro catchment covers a total area of 85 530 km2. 
It is enclosed by the Cantabrian Mountains and 
the Pyrenees (3400 m a.s.l.) in the north, the Cata-
lan Coastal Chain (1712 m a.s.l.) in the east, and 
from the north-west to the south-east by the 
Iberian massif (2300 m a.s.l.), which creates a 
dense river network in the catchment boundaries 
and an extended flat surface in the interior. This 
area is characterized by a meso-Mediterranean 
and supra-Mediterranean climate (Rivas-Martínez 
et al., 2004), with a mean annual precipitation of 
650 mm, varying from 300 mm in the central area 
of the main fluvial axis to 1700 mm in the Pyre-
nees Mountains, where snow is abundant in 
winter and early spring (Bejarano et al., 2010). 
The precipitation regime in the Mediterranean 
region has its maxima in autumn and spring and 
minima in winter and summer. Agricultural land 
accounts for 50 % of this territory. 

The Catalan catchments comprises several 
catchments ranging from 72 to 5000 km2, cover-
ing a total area of 16 500 km2 that drains directly 
from the Pyrenees or the Catalan Coastal Chain 
to the sea. This area is dominated by the Mediter-
ranean oceanic climate on the coast and a temper-
ate climate in the mountains. Precipitation 
declines from an annual mean of 1200 mm/year at 
the northern river heads to less than 500 mm/year 
in the southern catchments. Coniferous and 
broadleaf forest, scrubs and grasslands occupy 
more than 60 % of the surface in the northern 
catchments, which are progressively replaced by 
agricultural land in the south.

Hydrologic Data and Hydrological Indices

Several Spanish water agencies and regional 
governments provided series of daily mean flow 
measured at 428 gauging stations. Only gauges 

INTRODUCTION

River flow regime is a key element that structures 
freshwater ecosystems (Poff et al., 1997). Indeed, 
the understanding of the bio-physical associations 
between hydrological variability and stream 
biological communities is a critical scientific and 
management challenge (Alvarez-Cabria et al., 
2017). However, it is frequently the case that 
streamflow data are not available at a site of inter-
est such as where biomonitoring is carried out 
(Poff & Zimmerman, 2010; Sanborn & Bledsoe, 
2006). This hinders the exploration of the flow 
regime influence on stream ecology and ultimate-
ly the management of these systems. 

Natural flow regime can be described through 
a collection of ecologically relevant hydrological 
indices (Olden & Poff, 2003). Hence, interest in 

the prediction of these hydrological indices in 
ungauged streams has grown rapidly in recent 
years (Carlisle et al., 2010; Kennen et al., 2008). 
Most of the work has been aimed at addressing 
water yield and flooding issues. Thus, models to 
predict average flows, flood quantiles, flow dura-
tion curves or low-flow parameters dominate the 
literature (Sanborn & Bledsoe, 2006). In contrast, 
prediction of ecologically relevant hydrological 
indices has received limited attention (Carlisle et 
al., 2010; Knight et al., 2011; Sanborn & Bled-
soe, 2006). 

Multiple linear regression has been the most 
commonly used statistical technique to predict 
hydrological indices in ungauged sites (Knight et 
al., 2011). However, the potential improvement 
in model performance when using other modeling 
procedures that do not assume specific distribu-

Table 2.   Environmental variables used in the models of the 16 hydrological indices. Variables ambientales utilizadas para modelar 
los 16 índices hidrológicos.

Variable Units Description
MLR

Transformation

Pre mm/year Mean annual precipitation none

Pre4 mm/month Mean April precipitation none

PreSu mm/3month Mean summer precipitation x1/3

PreMx mm/month Maximum monthly precipitation none
PreMn mm/month Minimum monthly precipitation x1/2

MPrMn month Month of minimum precipitation None
MPrRn Monthly precipitation range x1/6

QPrRn Quarterly precipitation range x1/3

Tem ºC Mean annual temperature none

TemSu ºC Mean summer temperature none

Eva mm/year Mean annual  evapotranspiration none

EvMx mm/month Maximum monthly evapotranspiration log(x+1)

Are Km2 Total catchment area x1/5

Gra % Mean stream gradient x1/2

Ele m Reach elevation x1/2

Agr % Surface covered by agricultural land 
upstream of the river reach arcsin(x)

For % Surface covered by forest upstream of
the river reach arcsin(x)

Perm - Soil permeability none

Hard - Rock resistance to erosion none
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understanding of this technique over other 
machine learning approaches.

CONCLUSION

The application of four modeling techniques to 
predict 16 environmentally meaningful hydrologi-
cal indices evidenced that all techniques might be 
suitable, since they showed similar prediction 
ability. Nonetheless, the accuracy of complex 
modeling techniques equal to that of more classi-
cal methods may be associated with the low 
number of unaltered gauges used to fit the models. 
Expanding this comparison to larger areas with a 
higher number of unaltered gauges will allow the 
actual potential of the most sophisticated methods 
to be analyzed. ANFIS represented a slight 
improvement over MLR, although the computa-
tional cost and level of knowledge required to 
apply the method and interpret the results may 
limit its application. It is widely accepted that 
machine learning techniques are capable of 
dealing with linear and non-linear relationships. 
Hence, we believe that machine learning 
techniques must be considered when they do not 
entail a significant increase in the required 
resources and the links between hydrological 
indices and predictors can be clearly understood. 

On the other hand, not all hydrological indices 
were predicted with the same accuracy, resulting 
in critical implications and limitations depending 
on the further uses of these predictions. Magni-
tude and frequency indices were generally 
predicted with excellent accuracy, which opens a 
promising window to address several freshwater 
management and ecological issues. In contrast, 
none of the employed techniques allowed precise 
models for timing, duration and rate-of-change 
indices to be developed. Therefore, a major effort 
should be made to improve environmental 
databases in order to provide this climatic, 
geological, edaphological and groundwater infor-
mation on the spatio-temporal scales on which 
flow regime patterns are influenced.
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variety of ecological and earth science variables 
have also highlighted that alternative complex 
techniques did not exhibit great differences in 
their prediction accuracy relative to traditional 
modeling approaches (Manel et al., 1999; Mar-
mion et al., 2008). In contrast, other authors have 
found that complex modeling techniques outper-
formed linear approaches for predicting hydrolog-
ical attributes (Booker & Snelder, 2012; Tisseuil 
et al., 2010), fluvial nutrient load (Marce et al., 
2004) or species distribution (Elith et al., 2006). 
Most of these authors emphasized the high flexi-
bility of non-linear techniques in capturing com-
plex relationships between predictor and response 
variables (Elith et al., 2006). However, when the 
underlying data structure and assumptions are met 
for a particular modeling method (e.g., linearity 
for MLR), the application of complex techniques 
does not necessarily produce significant improve-
ments in model performance (Olden & Jackson, 
2002a). This is the case for the hydrological 
indices of magnitude. However, GAMs, RF and 
ANFIS usually outperformed MLR in indices in 
which linearity was rarely achieved, e.g., pred, 
FRE3, dPhigh, nPos and nNeg (Table 3). It must 
be also stressed that GAMs and ANFIS outper-
formed MLR (>5 %) in five and seven out of eight 
magnitude indices, respectively. GAMs allow for 
both linear and non-linear additive response 
shapes (Hastie & Tibshirani, 1986; Wood & 
Augustin, 2002). Hence, despite the linearity of 
several relationships, GAMs were able to tune the 
response more finely in specific sections where 
relationships were not linear. 

The small gains in predictive performance of 
complex modeling, i.e., machine learning, 
techniques can be attributed to the low number of 
training sites (Kampichler et al., 2010). Since 
machine learning techniques are viewed as 
data-intensive methods and the spatial availability 
of hydrological data sets is typically small, their 
application is limited. In this sense, studies in 
which complex modeling methods outperformed 
linear approaches have presented a number of 
sites on a scale of thousands (e.g., Prasad et al., 
2006), which contrasts with the 156 sites used in 
this work. Therefore, the application of these 
kinds of methods is promising where spatial 
coverage of hydrological data is substantial.  

Beyond the predictive performance of the 
models, other characteristics such as the statistical 
skills needed to develop them and interpret the 
results must be taken into account when selecting 
the optimal modeling technique. For instance, 
ANFIS required the definition of the number and 
shape of MF, and it is recommended (Marcé et al., 
2004) that these processes be carried out through 
an independent cross-validation process, as 
achieved in this work. On the other hand, the 
application of MLR involves complying with the 
assumptions of normality, homoscedasticity, inde-
pendence and linearity, which was accomplished 
through different transformations (Tables 1 and 
2). Given the disparity in the nature of hydrologi-
cal indices and environmental data, no single 
transformation could be applied systematically 
and, as shown here, transformation does not 
always assure compliance with assumptions. In 
contrast, RF was the only fully automated tech-
nique, in which the distribution of the variables 
does not have to comply with any assumption 
(Breiman, 2001), which reduces the time needed 
and facilitates its application by users who are not 
specialists in statistics. Lastly, the ability of each 
technique to identify the actual relationships 
between the hydrological indices and the environ-
mental variables must be taken into account. The 
four techniques agreed in the identification of the 
most important predictors for most of the models. 
However, MLR and GAMs allow straightforward 
relationships between predictors and response 
variables to be set (Manel et al., 1999). In contrast, 
machine learning methods have been largely seen 
as “black boxes.” For instance, the development 
of ANFIS models and the understanding of results 
require substantial time and knowledge, although 
enormous progress has been made in understand-
ing the relationships underlying this technique 
(Marce et al., 2004; Olden & Jackson, 2002b). On 
the other hand, RF results form an ensemble of 
regression trees and may also become a black box 
when interpreting the results (Prasad et al., 2006). 
Nonetheless, the ‘randomForest’ package of R 
statistical software incorporates specific functions 
to numerically and graphically visualize the 
marginal effect of each predictor variable on the 
response (e.g., Alvarez-Cabria et al., 2016). These 
features definitively facilitate the application and 

MA and MH indices is related to their dependence 
on precipitation events and direct catchment 
runoff (Tisseuil et al., 2010). Precipitation 
variables were derived from 1000x1000-m precip-
itation grids and it was demonstrated that they 
were precise enough to produce reliable models. In 
this regard, there are several previous studies that 
have found strong relationships between hydrolog-
ical variables and climatic predictor attributes 
(Carlise et al., 2010: Reidy-Liermann et al., 2011; 
Sanborn & Bledsoe, 2006). For instance, 
Reidy-Lierman et al. (2011) found that spring 
precipitation was the most important variable for 
discriminating rivers dominated by rain, snowmelt 
or mixed rivers. This agreed with our findings that 
Pre4 was among the most important variables for 
predicting flow magnitude, as all these river types 
can be found in this study area (Bejarano et al., 
2010). Moreover, Solans & Poff (2015) and Beja-
rano et al. (2010) found that the segregation of 
river types in the Ebro Basin is largely explained 
by the variability of climatic predictors such as 
temperature, evapotranspiration and precipitation. 
In this regard, the high gradient of EvMx and 
PreSu values that prevails from the oceanic west-
ern part to the eastern Mediterranean sector plays 
a significant role in the discrimination of flow 
magnitudes across the study area.

On the other hand, the errors of ML index 
models have been relatively high. In most 
instances, significant correlations between ML 
indices and soil and geology characteristics have 
been observed in previous works (Clausen & 
Pearson, 1995; Kroll et al., 2004, Lane et al., 
2017). The inclusion of these variables allowed 
prediction performances comparable to those 
showed by MA and MH indices to be obtained 
(Knight et al., 2011; Sanborn & Bledsoe, 2006). 
It is likely that the small contribution of these 
variables in the present study was due to the low 
precision of the geology and soil data rather than 
the lack of causal links. The most detailed soil 
and geology maps in the study area have a 1:200 
000 scale, which contrasts with the accuracy of 
the topography (25x25-m DEM), climatic 
(1000x1000-m grid) and land-use (1:25 000) data 
sources. Thus, we believe that improving soil and 
subsurface geology information should lead to 
improvements in modeling ML indices. 

Regressions carried out elsewhere (Knight et 
al., 2011; Sanborn & Bledsoe, 2006) have encoun-
tered difficulties in accurately predicting frequen-
cy indices, while we were able to predict FRE3 
with a reasonable accuracy. The most important 
predictor variables for FRE3 were ele and pre, 
which agreed with results highlighted in previous 
studies (Carlisle et al., 2010; Knight et al., 2011; 
Ourada et al., 2001). This result is not surprising, 
as the combination of peak flows of nonsynchro-
nous tributaries in the travel of flows downstream, 
i.e. to river segments showing lower elev, has been 
observed to attenuate and dampen flow peaks, 
reducing the number of times a flow overcomes a 
threshold (Naiman et al., 1998; Poff et al., 1997).

However, it must be also pointed out that 
FRE3 takes into account moderate-high flow 
events that usually last several days. The duration 
of these events contrasts with the time scale of the 
commonly available climate database. For 
instance, in our study area only mean monthly 
precipitation series were available, which presum-
ably lacked the proper time scale to characterize 
these events. Hence, the availability of daily 
precipitation data and its inclusion in models simi-
lar to those used in this study could be assumed to 
be highly beneficial for predicting these indices. 

In addition, the lack of proper predictor 
variables has probably been the critical element 
hindering the development of more accurate 
models for the duration, rate-of-change and 
timing indices. For these three groups of hydro-
logical indices, predictor variables derived from 
precipitation series (PreMx, PreMn and MPrRn) 
were the most contributing variables. Given these 
results, it could be speculated that that the wettest 
areas presented longer high-flow and shorter 
low-flow events, along with a higher rate of flow 
rise and fall, than zones where precipitation is 
scarce. However, even if these relationships may 
seem obvious and expected, they cannot be 
assured with certainty due to the low accuracy of 
the obtained models.  

Comparison of modeling techniques

Our analysis demonstrated that there was not an 
optimal technique to predict all hydrological 
indices. Several works focused on modeling a 

RESULTS

Model performance and predictor variables

The results exhibited a wide range of predictive 
performance, with adjusted R2s ranging from 
0.16 (MLR-Pred) to 0.88 (ANFIS-M4 and 
ANFIS-30HF; Table 3). However, all the models 
presented a level of significance p-value<0.01 
when tested against the F statistic hypothesis. 
Model performance was higher when predicting 
the flow magnitude (MA, MH and ML) and 
frequency indices (FH: FRE7) than when predict-
ing the timing (T: JMax; JMin and Pred), dura-
tion (DH: dPHigh and DL: dPLow) and 
rate-of-change (RC: nPos and nNeg) indices 
(K-W chi-squared=57.9, df=7, p-value<0.001; 
Table 3). In addition, for each hydrological index, 
the predictor variables kept the order of impor-
tance regardless of the modeling technique used. 
In this regard, it must be highlighted that, accord-
ing to the Person correlation values, neither of the 
geology variables, Perm and Hard, were selected 
within the set of 6 initial predictor variables. The 
MA (except for M9) and MH indices were 
predicted with excellent accuracy, showing 
adjusted R2s that commonly exceeded 0.8. In 
contrast, models of 30LF and X95 registered 
lower adjusted R2s, which ranged from 15 to 25 
% below those of the MA and MH indices. Are, 
annual (Pre), summer (PreSu) and April precipi-
tation (Pre4) were the most important variables in 
practically all the flow magnitude models, espe-
cially those developed for MA and MH. On the 
other hand, when predicting the M9 and ML 
indices, other environmental variables such as 
gra, EvMx and QPrRn presented high contribu-
tion rates to the models. The timing index models 
presented the lowest predictive performances 
(Table 3). In general, adjusted R2s for the JMax 
and JMin indices were not greater than 0.2, while 
the best model for Pred reached 0.4 (Table 3). Pre 
and MPrRn were selected in all models for Jmax. 
MPrRn, Eva and Ele were commonly included in 
the models for JMin. Pred was related mainly to 
PreMx and Gra. FRE3 was predicted with a max-
imum adjusted R2 of 0.71 (Table 3), and the most 
influential variables were Ele, PrMx and QPrRn. 
Models for predicting dPHigh and dPlow rarely 

reached an adjusted R2 over 0.3, and PrMx and 
PrMn were the most contributing variables, 
respectively (Table 3). Finally, models for nPos 
and nNeg showed adjusted R2s close to 0.5 (Table 
3). Pre, Ele and MPrRn were the most influential 
variables in all of these models. 

Comparison of modeling techniques

Differences in prediction accuracy among the 
different modeling techniques were not large 
(K-W chi-squared=1.44, df=3, p-value=0.7; Table 
3). However, although differences were not signif-
icant, it must be remarked that the GAMs and 
ANFIS techniques outperformed MLR by more 
than 5 % of the adjusted R2 in 10 and 13 hydrolog-
ical indices, respectively. The greatest improve-
ment in the predictive performance of these two 
techniques with respect to MLR was observed for 
the magnitude indices. ANFIS presented a mean 
increase of 7 % in the adjusted R2 compared to 
MLR in all the magnitude indices, but this only 
resulted in marginal differences (K-W 
chi-squared=2.8487, df=1, p-value=0.09). If only 
the MA and MH indices were considered, the 
differences in performance between MLR and 
ANFIS reached up to more than 10%, and signifi-
cant differences were observed (K-W 
chi-squared=5.13, df=1, p-value=0.02). Differ-
ences between MLR and GAMs that resulted in 
improvements in adjusted R2s beyond 5 % were 
found only for the MA and MH indices (WK-W 
chi-squared=6.72, df=1, p-value=0.01). In addi-
tion, ANFIS and GAMs outperformed MLR in 
one or several of the other index types (T, F and 
RC). On the other hand, RF did not show signifi-
cant enhancements in relation to MLR (K-W 
chi-squared=0.017439, df=1, p-value=0.8949). 

DISCUSSION

Model performance and predictor variables

This study confirms the findings of other works 
that not all the hydrological indices present the 
same potential to be predicted (Carlisle et al., 
2010; Yadav et al., 2007). Among the magnitude 
indices, MA and MH outperformed the ML 
indices. The high predictive performance of the 

leaving out one gauge at a time, developing a new 
model based on the remaining 155 observations 
and finally estimating the hydrological index for 
the left-out gauge. The results from this proce-
dure produced estimates of each hydrological 
metric as if the gauging station were an ungauged 
site. The variation between observed and predict-
ed values represents the uncertainty with which 
the model would be applied to predict index 
values at ungauged sites (Carlisle et al., 2010) 
and allows an assessment of the robustness of 
each method for estimating hydrological indices. 

We employed the root-mean-square-deviance 
(RMSD) and the adjusted R2 to assess the corre-
spondence between observed and estimated 
values as a relative performance of each model, 
following other authors (Carlisle et al., 2010; 
Sanborn & Bledsoe, 2006; Van Sickle et al., 
2006). Hence, models producing the lowest 
RMSD and the highest adjusted R2 were deemed 
superior. In addition, we used Kruscal-Wallis to 
test whether the differences in adjusted R2 found 
between the modeled indices and modeling 
techniques were significant.

homogeneous as possible based on series of 
binary rules. RF introduces random variation to 
CARTs by growing a defined number of trees 
with a bootstrap sample of the training data and a 
random sample of the predictors. The importance 
of the predictor variables is evaluated by random-
ly permuting each predictor variable in turn and 
predicting the response of the bootstrap sample 
observations. The decrease in prediction perfor-
mance is the measure of importance of the origi-
nal variable. Non-transformed response or 
predictor variables were used in the RF models.

Adaptive Neuro-Fuzzy Inference System (ANFIS)

ANFIS combines qualitative aspects of human 
knowledge from Fuzzy Inference Systems (FISs) 
with an effective, advanced machine learning 
method (neural networks) to adjust and tune these 
rules (Jang, 1993). 

A FIS is based on fuzzy decision rules and the 
fuzzy reasoning unit (Jang, 1993). The fuzzy 
decision rules (if-then rules) are rules expressed 
in the form “if X (input variable) is A then Y 
(output variable) is B”, where A (premise) and B 
(consequence) are linguistic values (e.g., high 
and low). Fuzzy logic allows, within these 
decision rules, any judgment state to take values 
between 0 and 1 according to its probability. In 
this regard, Membership Functions (MFs) are the 
functions that relate a variable to the probabilities 
associated with the judgment states.  

Fuzzy reasoning is an inference procedure 
used to derive conclusions from a set of fuzzy 
decision rules. The steps of fuzzy reasoning 
performed by a FIS are (Jang, 1993; Marce et al., 
2004):

1. Compare the input variables with the 
MFs in the premise part of the fuzzy rules to 
obtain the probability of each linguistic label 
(fuzzification).

2. Combine (through logic operators) the 
probability in the premise part to get the weight of 
each rule. 

3. Generate the qualified consequent of 
each rule depending on its weight.

4. Aggregate the qualified consequents to 
produce a crisp output (defuzzification). 

Given an input-output problem, the construc-

tion of a FIS has two fundamental steps: the spec-
ification of an appropriate number and type of 
input and output MFs (structure identification) 
and the specification of the shape of the MFs 
(parameter estimation). The structure identifica-
tion was solved by applying a trial-and-error 
procedure and a conservative criterion (i.e., mini-
mum number of parameters in the best fit). More-
over, since the maximum number of parameters 
to be fitted increases exponentially with the 
number of variables and MFs and the total 
number of parameters should not exceed 1/6 the 
number of cases (Marce et al., 2004), a maximum 
of 3 MFs was established.  Once the model struc-
ture, i.e., number of MFs, was defined, we 
estimated the parameters corresponding to each 
MF through the use of a numerical method called 
the Hybrid Learning Method (Marce et al., 2004). 
Specifically, these parameters were defined using 
adaptive neural networks algorithms. To avoid 
overfitting problems during the estimation of 
these parameters, the data set was randomly split 
into a training set (2/3 of the data set) used to fit 
the values and a trial set (1/3 of the data), which 
was not used by the hybrid learning algorithm. 
The splitting procedure was repeated 200 times 
and each time the parameters were adjusted 
individually. The hydrological indices were 
converted to the range (0 1), while the environ-
mental variables were converted to z-scores (i.e., 
mean=0, standard deviation=1) according to 
ANFIS requirements. Finally, to obtain the 
importance of the predictors in each model, envi-
ronmental variables were removed from the 
model one at a time while holding all other 
predictor variables. Then, for each model we 
calculated the predictive performance through the 
adjusted R2. The larger the decrease of predictive 
performance, the greater the assumed importance 
of that variable. 

Validation and evaluation of model perfor-
mance

A jackknife cross–validation procedure was 
performed with R statistical software to test the 
predictive performance of each modeling 
technique for the 16 hydrological indices. This 
cross-validation procedure was applied by 

Environmental variables (predictors)

Several studies have highlighted the importance 
of climate, topography, land cover and geology 
on the hydrological regime regardless of 
geographic location (Kennard et al., 2010; Lane 
et al., 2017; Sanborn & Bledsoe, 2006). Thus, 
environmental variables were used to explain the 
hydrological character of the recorded flow series 
and predict this character in the entire river 
network. A synthetic river network (SRN) was 
delineated using a 25-m digital elevation model 
(DEM) with the NestStream program (Benda et 
al., 2007). The SRN comprised 667 406 segments 
with lengths ranging from 16 to 800 m and was 
used as a spatial network to integrate the hydro-
logical and environmental information. Predictor 
variables were extracted from existing databases 
provided by several national and regional institu-
tions. The predictor variables for each segment 
represented the mean value of the variables in the 
upstream catchment. A set of 19 variables was 
selected (Table 2); detailed information regarding 
the units, scale and sources of information can be 
found in Peñas et al. (2014).

In addition, according to the maximum 
number of degrees of freedom allowed by the 
different techniques, a maximum of 6 predictor 
variables was established for the models. The 
selection of these 6 variables was based on the 
combination of scatter plots (hydrological 
indices versus environmental variables) and 
parametric correlations to identify the environ-
mental variables that were most meaningful for 
the prediction of each dependent variable (Knight 
et al., 2011). In this regard, the Pearson correla-
tion values between the hydrological indices and 
the predictor variables were used as the main 
screening criterion. Hence, for each hydrological 
index, we selected the 6 predictor variables with 
the highest correlation values. 

Modeling Techniques

The predictive performance of 4 distinct 
techniques to model hydrological indices was 
compared in this study. Modeling and statistical 
analysis were performed with R statistical 
software using the stats (v.3.3.2), gam (v.1.14) 

and randomForest (v.4.6 ) packages, except in the 
case of ANFIS models, which were developed 
using functions from the Mathwork´s MATLAB 
Fuzzy Logic Toolbox (FLT) included in a 
MATLAB code programmed by Marcé et al. 
(2004) and adapted by the authors to carry out the 
specific analyses performed in this study. The 
following section briefly describes each of the 
five modeling techniques.

Multiple Linear Regression (MLR)

MLR assumes a linear relationship between the 
predictor and the response variables through the 
estimation of parameters for each predictor. 
Specific transformations (Tables 1 and 2) were 
applied to meet the assumptions (normality, inde-
pendence and homoscedasticity) for applying 
MLR. If data did not meet the assumptions 
through any transformation, that which was 
closest to meeting these requirements was used. 
The relative importance of each variable was 
established based on the comparison of the 
regression test statistic T value. 

Generalized Additive Models (GAMs)

GAMs are semi-parametric models (Hastie & 
Tibshirani, 1986) that relate the predictor and 
dependent variable through a link function and 
estimate a non-parametric function for each 
predictor in order to adapt it to the local behavior 
of the regression function in several regions (Ven-
ables & Dichmont, 2004). The identity link func-
tion of the Gaussian family was applied to the 
transformed variables using the same transforma-
tions as in MLR, given that they were assumed to 
be normally distributed. Thin plate regression 
splines were used with a maximum of 3 degrees of 
freedom. Parallel to MLR, the relative importance 
of each variable was established based in the com-
parison of the regression test statistic T value. 

Random Forest (RF)

RF (Breiman, 2001) comprises an ensemble of 
individual Classification and Regression Trees 
(CARTs). CARTs split the dimensional space 
defined by the predictors into groups that are as 

unaffected by impoundments or significant 
abstraction upstream were selected for analysis. 
In addition, we selected gauges with data avail-
able for the 1976-2010 period and analyzed the 
quality of the series (Peñas et al., 2014). Finally, 
156 gauges were selected, which accounted for an 
average length of 17 years of data (Fig. 1).

It was beyond the scope of this study to 

predict and evaluate all the hydrological indices 
currently in use (see Olden & Poff, 2003); there-
fore, we selected one or several indices represent-
ing each of the five ecologically relevant aspects 
of the flow regime, i.e., magnitude, timing, 
frequency, duration and rate of change (Olden & 
Poff, 2003; Table 1).

tion fittings has been pointed out (Sanborn & 
Bledsoe, 2006). There are many examples of the 
use of other modeling and machine learning 
techniques to model many environmental issues 
(e.g., Alvarez-Cabria et al., 2016; Elith et al., 
2006; Manel et al., 1999, Marcé et al., 2004). In 
contrast, their application in the prediction of 
hydrological indices has been limited, although 
they could provide important benefits in this field 
(Alcázar et al., 2008; Heuvelmans et al., 2006; 
Snelder et al., 2009).

In this study we concentrated on developing 
statistical models for 16 hydrological indices 
covering the 5 ecologically relevant hydrologic 
attributes (i.e., magnitude, timing, frequency, 
duration and rate of change; Poff et al., 1997). We 
used one traditional technique (Multiple Linear 
Regression (MLR) and three more complex 
techniques that apply contrasting rationale to 
model the distribution of the response variable: 
Generalized Additive Models (GAMs), Random 
Forest (RF) and Adaptive Neuro-Fuzzy Inference 
System (ANFIS). Therefore, the objectives of this 
study were to 1) explore the ability of models to 
predict different types of hydrological indices and 
2) compare the performance of 5 modeling 
techniques to predict 16 hydrological indices at 
ungauged sites. 

METHODS

Study Area

The study area comprises the catchments of the 
northern third of the Iberian Peninsula (Fig. 1), 
covering a total area greater than 124 000 km2. It 
includes a heterogeneous set of environmental 
conditions. 

The area draining into the Cantabrian Sea 
encompasses several catchments with drainage 
areas ranging from 30 to 4907 km2, covering a 
total area of 22 000 km2. The rivers are confined 
by the Cantabrian Cordillera, which reaches up to 
2600 m a.s.l. and runs parallel to the coast. Thus, 
they are characterized by high slopes and short 
main stream lengths. The climate varies from 
thermo-temperate Atlantic on the coast to oro- 
and supra-temperate in the inner regions 
(Rivas-Martínez et al., 2004). Precipitation is 

abundant throughout the year with a mean of 
1300 mm/year, with maximum rainfall in Decem-
ber (150 mm/month) and minimum in July (50 
mm/month). Snowfall is frequent in winter above 
1000 m a.s.l. More than 50 % of the surface is 
covered by deciduous forest, scrubs and grass-
lands, while 10 % is occupied by agriculture. 

Meanwhile, the Mediterranean area is mainly 
covered by the Ebro catchment, along with a set 
of medium-sized basins in the east coast. The 
Ebro catchment covers a total area of 85 530 km2. 
It is enclosed by the Cantabrian Mountains and 
the Pyrenees (3400 m a.s.l.) in the north, the Cata-
lan Coastal Chain (1712 m a.s.l.) in the east, and 
from the north-west to the south-east by the 
Iberian massif (2300 m a.s.l.), which creates a 
dense river network in the catchment boundaries 
and an extended flat surface in the interior. This 
area is characterized by a meso-Mediterranean 
and supra-Mediterranean climate (Rivas-Martínez 
et al., 2004), with a mean annual precipitation of 
650 mm, varying from 300 mm in the central area 
of the main fluvial axis to 1700 mm in the Pyre-
nees Mountains, where snow is abundant in 
winter and early spring (Bejarano et al., 2010). 
The precipitation regime in the Mediterranean 
region has its maxima in autumn and spring and 
minima in winter and summer. Agricultural land 
accounts for 50 % of this territory. 

The Catalan catchments comprises several 
catchments ranging from 72 to 5000 km2, cover-
ing a total area of 16 500 km2 that drains directly 
from the Pyrenees or the Catalan Coastal Chain 
to the sea. This area is dominated by the Mediter-
ranean oceanic climate on the coast and a temper-
ate climate in the mountains. Precipitation 
declines from an annual mean of 1200 mm/year at 
the northern river heads to less than 500 mm/year 
in the southern catchments. Coniferous and 
broadleaf forest, scrubs and grasslands occupy 
more than 60 % of the surface in the northern 
catchments, which are progressively replaced by 
agricultural land in the south.

Hydrologic Data and Hydrological Indices

Several Spanish water agencies and regional 
governments provided series of daily mean flow 
measured at 428 gauging stations. Only gauges 

INTRODUCTION

River flow regime is a key element that structures 
freshwater ecosystems (Poff et al., 1997). Indeed, 
the understanding of the bio-physical associations 
between hydrological variability and stream 
biological communities is a critical scientific and 
management challenge (Alvarez-Cabria et al., 
2017). However, it is frequently the case that 
streamflow data are not available at a site of inter-
est such as where biomonitoring is carried out 
(Poff & Zimmerman, 2010; Sanborn & Bledsoe, 
2006). This hinders the exploration of the flow 
regime influence on stream ecology and ultimate-
ly the management of these systems. 

Natural flow regime can be described through 
a collection of ecologically relevant hydrological 
indices (Olden & Poff, 2003). Hence, interest in 

the prediction of these hydrological indices in 
ungauged streams has grown rapidly in recent 
years (Carlisle et al., 2010; Kennen et al., 2008). 
Most of the work has been aimed at addressing 
water yield and flooding issues. Thus, models to 
predict average flows, flood quantiles, flow dura-
tion curves or low-flow parameters dominate the 
literature (Sanborn & Bledsoe, 2006). In contrast, 
prediction of ecologically relevant hydrological 
indices has received limited attention (Carlisle et 
al., 2010; Knight et al., 2011; Sanborn & Bled-
soe, 2006). 

Multiple linear regression has been the most 
commonly used statistical technique to predict 
hydrological indices in ungauged sites (Knight et 
al., 2011). However, the potential improvement 
in model performance when using other modeling 
procedures that do not assume specific distribu-



16827_Limnetica 37(1), pàgina 1, 14/09/2017

Limnetica, 37(1): 145-158 (2018)

151Comparison of techniques to model hydrological indices

in Streams. River Research and Application, 
26, 118-136. DOI: 10.1002/rra.1247 

CLAUSEN, B., & C.P. PEARSON, 1995. 
Regional Frequency-Analysis of Annual Max-
imum Streamflow Drought. Journal of 
Hydrology, 173, 111-130. DOI: 10.1016/0022-
1694(95)02713-Y

HEUVELMANS, G., B. MUYS & J. FEYEN. 
2006, Regionalisation of the parameters of a 
hydrological model: Comparison of linear 
regression models with artificial neural nets. 
Journal of Hydrology, 319, 245-265. DOI: 
10.1016/j.jhydrol.2005.07.030

ELITH, J., C.H. GRAHAM, R. P. ANDERSON, 
M. DUDIK, S. FERRIER, A. GUISAN, R.J. 
HIJMANS, F. HUETTMANN, J.R. LEATH-
WICK, A. LEHMANN, J. LI, L.G. 
LOHMANN, B.A. LOISELLE, G. MANION, 
C. MORITZ, M. NAKAMURA, Y. NAKA-
ZAWA, J.M. OVERTON, A.T. PETERSON, 
S.J. PHILLIPS, K. RICHARDSON, R. SCA-
CHETTI-PEREIRA, R.E. SCHAPIRE, J. 
SOBERON, S. WILLIAMS, M.S. WISZ, & 
N.E. ZIMMERMANN. 2006. Novel methods 
improve prediction of species' distributions 
from occurrence data. Ecography, 29, 129-151. 
DOI: 10.1111/j.2006.0906-7590.04596.x 

HASTIE, T. & R. TIBSHIRANI. 1986. General-
ized additive models. Statistical Science, 1, 
297–318.

JANG, J. S. R. 1993. Anfis-Adaptive-Net-
work-Based Fuzzy Inference System. IEEE 
Transactions on Systems Man and Cybernet-
ics, 23, 665-685. 

KAMPICHLER, C., R. WIELAND, S. CALME, 
H. WEISSENBERGER & S. ARRIA-
GA-WEISS. 2010. Classification in conser-
vation biology: A comparison of five 
machine-learning methods. Ecological Infor-
matics, 5, 441-450. DOI: 10.1016/j.ecoinf.
2010.06.003

KENNARD, M. J., B.J. PUSEY, J.D. OLDEN, 
S.J. MACKAY, J.L. STEIN & N. MARSH 
2010. Classification of natural flow regimes in 
Australia to support environmental flow man-
agement. Freshwater Biology, 55, 171–193. 
DOI: 10.1111/j.1365-2427.2009.02307.x

KENNEN, J. G., L.J. KAUFFMAN, M.A. 
AYERS, D.M. WOLOCK & S.J. COLARUL-

LO. 2008. Use of an integrated flow model to 
estimate ecologically relevant hydrologic 
characteristics at stream biomonitoring sites. 
Ecological Modelling, 211, 57-76. DOI: 
10.1016/j.ecolmodel.2007.08.014

KNIGHT, R. R., W.S. GAIN & W.J. WOLFE. 
2011. Modelling ecological flow regime: an 
example from the Tennessee and Cumberland 
River basins. Ecohydrology, 5, 613-627. DOI: 
10.1002/eco.246

KROLL, C. N., J. LUZ, B. ALLEN & R.M. 
VOGEL. 2004. Developing a watershed char-
acteristics database to improve low stream-
flow prediction. Journal of Hydrologic Engi-
neering, 9(2): 116-125 DOI: 10.1061/(ASCE)
1084-0699(2004)9:2(116)

LANE, B. A, H.E. DAHLKE, G.B. PASTER-
NACK & S. SANDOVAL-SOLIS. 2017. 
Revealing the diversity of Natural Hydrologic 
Regimes in California with Relevance for 
Environmental Flows Applications. Journal of 
the American Water Resources Association, 53 
(2), 411-430. DOI:  10.1111/1752-1688.12504

MANEL, S., J.M. DIAS, S.T. BUCKTON, & S.J. 
ORMEROD. 1999. Alternative methods for 
predicting species distribution: an illustration 
with Himalayan river birds. Journal of 
Applied Ecology, 36, 734-747. DOI: 10.1046/
j.1365-2664.1999.00440.x

MARCE, R., M. COMERMA, J.C. GARCIA, & J. 
ARMENGOL. 2004. A neuro-fuzzy modeling 
tool to estimate fluvial nutrient loads in water-
sheds under time-varying human impact. 
Limnology and Oceanography: Methods, 2, 
342-355. DOI: 10.4319/lom.2004.2.342

MARMION, M., J. HJORT, W. THUILLER, & 
M. LUOTO. 2008. A comparison of predic-
tive methods in modelling the distribution of 
periglacial landforms in Finnish Lapland. 
Earth Surface Processes and Landforms, 33, 
2241-2254. DOI: 10.1002/esp.1695

NAIMAN, R.J., T.J. BEECHIE, L.E. BENDA, 
D.R. BERG, P.A. BISSON, L.H. MACDON-
ALD, M.D. O’CONNOR, P.L. OLSON, & 
E.A. STEEL. 1992. Fundamental elements of 
ecologically healthy watersheds in the pacific 
northwest coastal ecoregion. In: Watershed 
Management: Balancing Sustainability and 
Environmental Change. R.J. Naiman (ed): 

understanding of this technique over other 
machine learning approaches.

CONCLUSION

The application of four modeling techniques to 
predict 16 environmentally meaningful hydrologi-
cal indices evidenced that all techniques might be 
suitable, since they showed similar prediction 
ability. Nonetheless, the accuracy of complex 
modeling techniques equal to that of more classi-
cal methods may be associated with the low 
number of unaltered gauges used to fit the models. 
Expanding this comparison to larger areas with a 
higher number of unaltered gauges will allow the 
actual potential of the most sophisticated methods 
to be analyzed. ANFIS represented a slight 
improvement over MLR, although the computa-
tional cost and level of knowledge required to 
apply the method and interpret the results may 
limit its application. It is widely accepted that 
machine learning techniques are capable of 
dealing with linear and non-linear relationships. 
Hence, we believe that machine learning 
techniques must be considered when they do not 
entail a significant increase in the required 
resources and the links between hydrological 
indices and predictors can be clearly understood. 

On the other hand, not all hydrological indices 
were predicted with the same accuracy, resulting 
in critical implications and limitations depending 
on the further uses of these predictions. Magni-
tude and frequency indices were generally 
predicted with excellent accuracy, which opens a 
promising window to address several freshwater 
management and ecological issues. In contrast, 
none of the employed techniques allowed precise 
models for timing, duration and rate-of-change 
indices to be developed. Therefore, a major effort 
should be made to improve environmental 
databases in order to provide this climatic, 
geological, edaphological and groundwater infor-
mation on the spatio-temporal scales on which 
flow regime patterns are influenced.
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variety of ecological and earth science variables 
have also highlighted that alternative complex 
techniques did not exhibit great differences in 
their prediction accuracy relative to traditional 
modeling approaches (Manel et al., 1999; Mar-
mion et al., 2008). In contrast, other authors have 
found that complex modeling techniques outper-
formed linear approaches for predicting hydrolog-
ical attributes (Booker & Snelder, 2012; Tisseuil 
et al., 2010), fluvial nutrient load (Marce et al., 
2004) or species distribution (Elith et al., 2006). 
Most of these authors emphasized the high flexi-
bility of non-linear techniques in capturing com-
plex relationships between predictor and response 
variables (Elith et al., 2006). However, when the 
underlying data structure and assumptions are met 
for a particular modeling method (e.g., linearity 
for MLR), the application of complex techniques 
does not necessarily produce significant improve-
ments in model performance (Olden & Jackson, 
2002a). This is the case for the hydrological 
indices of magnitude. However, GAMs, RF and 
ANFIS usually outperformed MLR in indices in 
which linearity was rarely achieved, e.g., pred, 
FRE3, dPhigh, nPos and nNeg (Table 3). It must 
be also stressed that GAMs and ANFIS outper-
formed MLR (>5 %) in five and seven out of eight 
magnitude indices, respectively. GAMs allow for 
both linear and non-linear additive response 
shapes (Hastie & Tibshirani, 1986; Wood & 
Augustin, 2002). Hence, despite the linearity of 
several relationships, GAMs were able to tune the 
response more finely in specific sections where 
relationships were not linear. 

The small gains in predictive performance of 
complex modeling, i.e., machine learning, 
techniques can be attributed to the low number of 
training sites (Kampichler et al., 2010). Since 
machine learning techniques are viewed as 
data-intensive methods and the spatial availability 
of hydrological data sets is typically small, their 
application is limited. In this sense, studies in 
which complex modeling methods outperformed 
linear approaches have presented a number of 
sites on a scale of thousands (e.g., Prasad et al., 
2006), which contrasts with the 156 sites used in 
this work. Therefore, the application of these 
kinds of methods is promising where spatial 
coverage of hydrological data is substantial.  

Beyond the predictive performance of the 
models, other characteristics such as the statistical 
skills needed to develop them and interpret the 
results must be taken into account when selecting 
the optimal modeling technique. For instance, 
ANFIS required the definition of the number and 
shape of MF, and it is recommended (Marcé et al., 
2004) that these processes be carried out through 
an independent cross-validation process, as 
achieved in this work. On the other hand, the 
application of MLR involves complying with the 
assumptions of normality, homoscedasticity, inde-
pendence and linearity, which was accomplished 
through different transformations (Tables 1 and 
2). Given the disparity in the nature of hydrologi-
cal indices and environmental data, no single 
transformation could be applied systematically 
and, as shown here, transformation does not 
always assure compliance with assumptions. In 
contrast, RF was the only fully automated tech-
nique, in which the distribution of the variables 
does not have to comply with any assumption 
(Breiman, 2001), which reduces the time needed 
and facilitates its application by users who are not 
specialists in statistics. Lastly, the ability of each 
technique to identify the actual relationships 
between the hydrological indices and the environ-
mental variables must be taken into account. The 
four techniques agreed in the identification of the 
most important predictors for most of the models. 
However, MLR and GAMs allow straightforward 
relationships between predictors and response 
variables to be set (Manel et al., 1999). In contrast, 
machine learning methods have been largely seen 
as “black boxes.” For instance, the development 
of ANFIS models and the understanding of results 
require substantial time and knowledge, although 
enormous progress has been made in understand-
ing the relationships underlying this technique 
(Marce et al., 2004; Olden & Jackson, 2002b). On 
the other hand, RF results form an ensemble of 
regression trees and may also become a black box 
when interpreting the results (Prasad et al., 2006). 
Nonetheless, the ‘randomForest’ package of R 
statistical software incorporates specific functions 
to numerically and graphically visualize the 
marginal effect of each predictor variable on the 
response (e.g., Alvarez-Cabria et al., 2016). These 
features definitively facilitate the application and 

MA and MH indices is related to their dependence 
on precipitation events and direct catchment 
runoff (Tisseuil et al., 2010). Precipitation 
variables were derived from 1000x1000-m precip-
itation grids and it was demonstrated that they 
were precise enough to produce reliable models. In 
this regard, there are several previous studies that 
have found strong relationships between hydrolog-
ical variables and climatic predictor attributes 
(Carlise et al., 2010: Reidy-Liermann et al., 2011; 
Sanborn & Bledsoe, 2006). For instance, 
Reidy-Lierman et al. (2011) found that spring 
precipitation was the most important variable for 
discriminating rivers dominated by rain, snowmelt 
or mixed rivers. This agreed with our findings that 
Pre4 was among the most important variables for 
predicting flow magnitude, as all these river types 
can be found in this study area (Bejarano et al., 
2010). Moreover, Solans & Poff (2015) and Beja-
rano et al. (2010) found that the segregation of 
river types in the Ebro Basin is largely explained 
by the variability of climatic predictors such as 
temperature, evapotranspiration and precipitation. 
In this regard, the high gradient of EvMx and 
PreSu values that prevails from the oceanic west-
ern part to the eastern Mediterranean sector plays 
a significant role in the discrimination of flow 
magnitudes across the study area.

On the other hand, the errors of ML index 
models have been relatively high. In most 
instances, significant correlations between ML 
indices and soil and geology characteristics have 
been observed in previous works (Clausen & 
Pearson, 1995; Kroll et al., 2004, Lane et al., 
2017). The inclusion of these variables allowed 
prediction performances comparable to those 
showed by MA and MH indices to be obtained 
(Knight et al., 2011; Sanborn & Bledsoe, 2006). 
It is likely that the small contribution of these 
variables in the present study was due to the low 
precision of the geology and soil data rather than 
the lack of causal links. The most detailed soil 
and geology maps in the study area have a 1:200 
000 scale, which contrasts with the accuracy of 
the topography (25x25-m DEM), climatic 
(1000x1000-m grid) and land-use (1:25 000) data 
sources. Thus, we believe that improving soil and 
subsurface geology information should lead to 
improvements in modeling ML indices. 

Regressions carried out elsewhere (Knight et 
al., 2011; Sanborn & Bledsoe, 2006) have encoun-
tered difficulties in accurately predicting frequen-
cy indices, while we were able to predict FRE3 
with a reasonable accuracy. The most important 
predictor variables for FRE3 were ele and pre, 
which agreed with results highlighted in previous 
studies (Carlisle et al., 2010; Knight et al., 2011; 
Ourada et al., 2001). This result is not surprising, 
as the combination of peak flows of nonsynchro-
nous tributaries in the travel of flows downstream, 
i.e. to river segments showing lower elev, has been 
observed to attenuate and dampen flow peaks, 
reducing the number of times a flow overcomes a 
threshold (Naiman et al., 1998; Poff et al., 1997).

However, it must be also pointed out that 
FRE3 takes into account moderate-high flow 
events that usually last several days. The duration 
of these events contrasts with the time scale of the 
commonly available climate database. For 
instance, in our study area only mean monthly 
precipitation series were available, which presum-
ably lacked the proper time scale to characterize 
these events. Hence, the availability of daily 
precipitation data and its inclusion in models simi-
lar to those used in this study could be assumed to 
be highly beneficial for predicting these indices. 

In addition, the lack of proper predictor 
variables has probably been the critical element 
hindering the development of more accurate 
models for the duration, rate-of-change and 
timing indices. For these three groups of hydro-
logical indices, predictor variables derived from 
precipitation series (PreMx, PreMn and MPrRn) 
were the most contributing variables. Given these 
results, it could be speculated that that the wettest 
areas presented longer high-flow and shorter 
low-flow events, along with a higher rate of flow 
rise and fall, than zones where precipitation is 
scarce. However, even if these relationships may 
seem obvious and expected, they cannot be 
assured with certainty due to the low accuracy of 
the obtained models.  

Comparison of modeling techniques

Our analysis demonstrated that there was not an 
optimal technique to predict all hydrological 
indices. Several works focused on modeling a 

RESULTS

Model performance and predictor variables

The results exhibited a wide range of predictive 
performance, with adjusted R2s ranging from 
0.16 (MLR-Pred) to 0.88 (ANFIS-M4 and 
ANFIS-30HF; Table 3). However, all the models 
presented a level of significance p-value<0.01 
when tested against the F statistic hypothesis. 
Model performance was higher when predicting 
the flow magnitude (MA, MH and ML) and 
frequency indices (FH: FRE7) than when predict-
ing the timing (T: JMax; JMin and Pred), dura-
tion (DH: dPHigh and DL: dPLow) and 
rate-of-change (RC: nPos and nNeg) indices 
(K-W chi-squared=57.9, df=7, p-value<0.001; 
Table 3). In addition, for each hydrological index, 
the predictor variables kept the order of impor-
tance regardless of the modeling technique used. 
In this regard, it must be highlighted that, accord-
ing to the Person correlation values, neither of the 
geology variables, Perm and Hard, were selected 
within the set of 6 initial predictor variables. The 
MA (except for M9) and MH indices were 
predicted with excellent accuracy, showing 
adjusted R2s that commonly exceeded 0.8. In 
contrast, models of 30LF and X95 registered 
lower adjusted R2s, which ranged from 15 to 25 
% below those of the MA and MH indices. Are, 
annual (Pre), summer (PreSu) and April precipi-
tation (Pre4) were the most important variables in 
practically all the flow magnitude models, espe-
cially those developed for MA and MH. On the 
other hand, when predicting the M9 and ML 
indices, other environmental variables such as 
gra, EvMx and QPrRn presented high contribu-
tion rates to the models. The timing index models 
presented the lowest predictive performances 
(Table 3). In general, adjusted R2s for the JMax 
and JMin indices were not greater than 0.2, while 
the best model for Pred reached 0.4 (Table 3). Pre 
and MPrRn were selected in all models for Jmax. 
MPrRn, Eva and Ele were commonly included in 
the models for JMin. Pred was related mainly to 
PreMx and Gra. FRE3 was predicted with a max-
imum adjusted R2 of 0.71 (Table 3), and the most 
influential variables were Ele, PrMx and QPrRn. 
Models for predicting dPHigh and dPlow rarely 

reached an adjusted R2 over 0.3, and PrMx and 
PrMn were the most contributing variables, 
respectively (Table 3). Finally, models for nPos 
and nNeg showed adjusted R2s close to 0.5 (Table 
3). Pre, Ele and MPrRn were the most influential 
variables in all of these models. 

Comparison of modeling techniques

Differences in prediction accuracy among the 
different modeling techniques were not large 
(K-W chi-squared=1.44, df=3, p-value=0.7; Table 
3). However, although differences were not signif-
icant, it must be remarked that the GAMs and 
ANFIS techniques outperformed MLR by more 
than 5 % of the adjusted R2 in 10 and 13 hydrolog-
ical indices, respectively. The greatest improve-
ment in the predictive performance of these two 
techniques with respect to MLR was observed for 
the magnitude indices. ANFIS presented a mean 
increase of 7 % in the adjusted R2 compared to 
MLR in all the magnitude indices, but this only 
resulted in marginal differences (K-W 
chi-squared=2.8487, df=1, p-value=0.09). If only 
the MA and MH indices were considered, the 
differences in performance between MLR and 
ANFIS reached up to more than 10%, and signifi-
cant differences were observed (K-W 
chi-squared=5.13, df=1, p-value=0.02). Differ-
ences between MLR and GAMs that resulted in 
improvements in adjusted R2s beyond 5 % were 
found only for the MA and MH indices (WK-W 
chi-squared=6.72, df=1, p-value=0.01). In addi-
tion, ANFIS and GAMs outperformed MLR in 
one or several of the other index types (T, F and 
RC). On the other hand, RF did not show signifi-
cant enhancements in relation to MLR (K-W 
chi-squared=0.017439, df=1, p-value=0.8949). 

DISCUSSION

Model performance and predictor variables

This study confirms the findings of other works 
that not all the hydrological indices present the 
same potential to be predicted (Carlisle et al., 
2010; Yadav et al., 2007). Among the magnitude 
indices, MA and MH outperformed the ML 
indices. The high predictive performance of the 

leaving out one gauge at a time, developing a new 
model based on the remaining 155 observations 
and finally estimating the hydrological index for 
the left-out gauge. The results from this proce-
dure produced estimates of each hydrological 
metric as if the gauging station were an ungauged 
site. The variation between observed and predict-
ed values represents the uncertainty with which 
the model would be applied to predict index 
values at ungauged sites (Carlisle et al., 2010) 
and allows an assessment of the robustness of 
each method for estimating hydrological indices. 

We employed the root-mean-square-deviance 
(RMSD) and the adjusted R2 to assess the corre-
spondence between observed and estimated 
values as a relative performance of each model, 
following other authors (Carlisle et al., 2010; 
Sanborn & Bledsoe, 2006; Van Sickle et al., 
2006). Hence, models producing the lowest 
RMSD and the highest adjusted R2 were deemed 
superior. In addition, we used Kruscal-Wallis to 
test whether the differences in adjusted R2 found 
between the modeled indices and modeling 
techniques were significant.

homogeneous as possible based on series of 
binary rules. RF introduces random variation to 
CARTs by growing a defined number of trees 
with a bootstrap sample of the training data and a 
random sample of the predictors. The importance 
of the predictor variables is evaluated by random-
ly permuting each predictor variable in turn and 
predicting the response of the bootstrap sample 
observations. The decrease in prediction perfor-
mance is the measure of importance of the origi-
nal variable. Non-transformed response or 
predictor variables were used in the RF models.

Adaptive Neuro-Fuzzy Inference System (ANFIS)

ANFIS combines qualitative aspects of human 
knowledge from Fuzzy Inference Systems (FISs) 
with an effective, advanced machine learning 
method (neural networks) to adjust and tune these 
rules (Jang, 1993). 

A FIS is based on fuzzy decision rules and the 
fuzzy reasoning unit (Jang, 1993). The fuzzy 
decision rules (if-then rules) are rules expressed 
in the form “if X (input variable) is A then Y 
(output variable) is B”, where A (premise) and B 
(consequence) are linguistic values (e.g., high 
and low). Fuzzy logic allows, within these 
decision rules, any judgment state to take values 
between 0 and 1 according to its probability. In 
this regard, Membership Functions (MFs) are the 
functions that relate a variable to the probabilities 
associated with the judgment states.  

Fuzzy reasoning is an inference procedure 
used to derive conclusions from a set of fuzzy 
decision rules. The steps of fuzzy reasoning 
performed by a FIS are (Jang, 1993; Marce et al., 
2004):

1. Compare the input variables with the 
MFs in the premise part of the fuzzy rules to 
obtain the probability of each linguistic label 
(fuzzification).

2. Combine (through logic operators) the 
probability in the premise part to get the weight of 
each rule. 

3. Generate the qualified consequent of 
each rule depending on its weight.

4. Aggregate the qualified consequents to 
produce a crisp output (defuzzification). 

Given an input-output problem, the construc-

tion of a FIS has two fundamental steps: the spec-
ification of an appropriate number and type of 
input and output MFs (structure identification) 
and the specification of the shape of the MFs 
(parameter estimation). The structure identifica-
tion was solved by applying a trial-and-error 
procedure and a conservative criterion (i.e., mini-
mum number of parameters in the best fit). More-
over, since the maximum number of parameters 
to be fitted increases exponentially with the 
number of variables and MFs and the total 
number of parameters should not exceed 1/6 the 
number of cases (Marce et al., 2004), a maximum 
of 3 MFs was established.  Once the model struc-
ture, i.e., number of MFs, was defined, we 
estimated the parameters corresponding to each 
MF through the use of a numerical method called 
the Hybrid Learning Method (Marce et al., 2004). 
Specifically, these parameters were defined using 
adaptive neural networks algorithms. To avoid 
overfitting problems during the estimation of 
these parameters, the data set was randomly split 
into a training set (2/3 of the data set) used to fit 
the values and a trial set (1/3 of the data), which 
was not used by the hybrid learning algorithm. 
The splitting procedure was repeated 200 times 
and each time the parameters were adjusted 
individually. The hydrological indices were 
converted to the range (0 1), while the environ-
mental variables were converted to z-scores (i.e., 
mean=0, standard deviation=1) according to 
ANFIS requirements. Finally, to obtain the 
importance of the predictors in each model, envi-
ronmental variables were removed from the 
model one at a time while holding all other 
predictor variables. Then, for each model we 
calculated the predictive performance through the 
adjusted R2. The larger the decrease of predictive 
performance, the greater the assumed importance 
of that variable. 

Validation and evaluation of model perfor-
mance

A jackknife cross–validation procedure was 
performed with R statistical software to test the 
predictive performance of each modeling 
technique for the 16 hydrological indices. This 
cross-validation procedure was applied by 

Environmental variables (predictors)

Several studies have highlighted the importance 
of climate, topography, land cover and geology 
on the hydrological regime regardless of 
geographic location (Kennard et al., 2010; Lane 
et al., 2017; Sanborn & Bledsoe, 2006). Thus, 
environmental variables were used to explain the 
hydrological character of the recorded flow series 
and predict this character in the entire river 
network. A synthetic river network (SRN) was 
delineated using a 25-m digital elevation model 
(DEM) with the NestStream program (Benda et 
al., 2007). The SRN comprised 667 406 segments 
with lengths ranging from 16 to 800 m and was 
used as a spatial network to integrate the hydro-
logical and environmental information. Predictor 
variables were extracted from existing databases 
provided by several national and regional institu-
tions. The predictor variables for each segment 
represented the mean value of the variables in the 
upstream catchment. A set of 19 variables was 
selected (Table 2); detailed information regarding 
the units, scale and sources of information can be 
found in Peñas et al. (2014).

In addition, according to the maximum 
number of degrees of freedom allowed by the 
different techniques, a maximum of 6 predictor 
variables was established for the models. The 
selection of these 6 variables was based on the 
combination of scatter plots (hydrological 
indices versus environmental variables) and 
parametric correlations to identify the environ-
mental variables that were most meaningful for 
the prediction of each dependent variable (Knight 
et al., 2011). In this regard, the Pearson correla-
tion values between the hydrological indices and 
the predictor variables were used as the main 
screening criterion. Hence, for each hydrological 
index, we selected the 6 predictor variables with 
the highest correlation values. 

Modeling Techniques

The predictive performance of 4 distinct 
techniques to model hydrological indices was 
compared in this study. Modeling and statistical 
analysis were performed with R statistical 
software using the stats (v.3.3.2), gam (v.1.14) 

and randomForest (v.4.6 ) packages, except in the 
case of ANFIS models, which were developed 
using functions from the Mathwork´s MATLAB 
Fuzzy Logic Toolbox (FLT) included in a 
MATLAB code programmed by Marcé et al. 
(2004) and adapted by the authors to carry out the 
specific analyses performed in this study. The 
following section briefly describes each of the 
five modeling techniques.

Multiple Linear Regression (MLR)

MLR assumes a linear relationship between the 
predictor and the response variables through the 
estimation of parameters for each predictor. 
Specific transformations (Tables 1 and 2) were 
applied to meet the assumptions (normality, inde-
pendence and homoscedasticity) for applying 
MLR. If data did not meet the assumptions 
through any transformation, that which was 
closest to meeting these requirements was used. 
The relative importance of each variable was 
established based on the comparison of the 
regression test statistic T value. 

Generalized Additive Models (GAMs)

GAMs are semi-parametric models (Hastie & 
Tibshirani, 1986) that relate the predictor and 
dependent variable through a link function and 
estimate a non-parametric function for each 
predictor in order to adapt it to the local behavior 
of the regression function in several regions (Ven-
ables & Dichmont, 2004). The identity link func-
tion of the Gaussian family was applied to the 
transformed variables using the same transforma-
tions as in MLR, given that they were assumed to 
be normally distributed. Thin plate regression 
splines were used with a maximum of 3 degrees of 
freedom. Parallel to MLR, the relative importance 
of each variable was established based in the com-
parison of the regression test statistic T value. 

Random Forest (RF)

RF (Breiman, 2001) comprises an ensemble of 
individual Classification and Regression Trees 
(CARTs). CARTs split the dimensional space 
defined by the predictors into groups that are as 

unaffected by impoundments or significant 
abstraction upstream were selected for analysis. 
In addition, we selected gauges with data avail-
able for the 1976-2010 period and analyzed the 
quality of the series (Peñas et al., 2014). Finally, 
156 gauges were selected, which accounted for an 
average length of 17 years of data (Fig. 1).

It was beyond the scope of this study to 

predict and evaluate all the hydrological indices 
currently in use (see Olden & Poff, 2003); there-
fore, we selected one or several indices represent-
ing each of the five ecologically relevant aspects 
of the flow regime, i.e., magnitude, timing, 
frequency, duration and rate of change (Olden & 
Poff, 2003; Table 1).

tion fittings has been pointed out (Sanborn & 
Bledsoe, 2006). There are many examples of the 
use of other modeling and machine learning 
techniques to model many environmental issues 
(e.g., Alvarez-Cabria et al., 2016; Elith et al., 
2006; Manel et al., 1999, Marcé et al., 2004). In 
contrast, their application in the prediction of 
hydrological indices has been limited, although 
they could provide important benefits in this field 
(Alcázar et al., 2008; Heuvelmans et al., 2006; 
Snelder et al., 2009).

In this study we concentrated on developing 
statistical models for 16 hydrological indices 
covering the 5 ecologically relevant hydrologic 
attributes (i.e., magnitude, timing, frequency, 
duration and rate of change; Poff et al., 1997). We 
used one traditional technique (Multiple Linear 
Regression (MLR) and three more complex 
techniques that apply contrasting rationale to 
model the distribution of the response variable: 
Generalized Additive Models (GAMs), Random 
Forest (RF) and Adaptive Neuro-Fuzzy Inference 
System (ANFIS). Therefore, the objectives of this 
study were to 1) explore the ability of models to 
predict different types of hydrological indices and 
2) compare the performance of 5 modeling 
techniques to predict 16 hydrological indices at 
ungauged sites. 

METHODS

Study Area

The study area comprises the catchments of the 
northern third of the Iberian Peninsula (Fig. 1), 
covering a total area greater than 124 000 km2. It 
includes a heterogeneous set of environmental 
conditions. 

The area draining into the Cantabrian Sea 
encompasses several catchments with drainage 
areas ranging from 30 to 4907 km2, covering a 
total area of 22 000 km2. The rivers are confined 
by the Cantabrian Cordillera, which reaches up to 
2600 m a.s.l. and runs parallel to the coast. Thus, 
they are characterized by high slopes and short 
main stream lengths. The climate varies from 
thermo-temperate Atlantic on the coast to oro- 
and supra-temperate in the inner regions 
(Rivas-Martínez et al., 2004). Precipitation is 

abundant throughout the year with a mean of 
1300 mm/year, with maximum rainfall in Decem-
ber (150 mm/month) and minimum in July (50 
mm/month). Snowfall is frequent in winter above 
1000 m a.s.l. More than 50 % of the surface is 
covered by deciduous forest, scrubs and grass-
lands, while 10 % is occupied by agriculture. 

Meanwhile, the Mediterranean area is mainly 
covered by the Ebro catchment, along with a set 
of medium-sized basins in the east coast. The 
Ebro catchment covers a total area of 85 530 km2. 
It is enclosed by the Cantabrian Mountains and 
the Pyrenees (3400 m a.s.l.) in the north, the Cata-
lan Coastal Chain (1712 m a.s.l.) in the east, and 
from the north-west to the south-east by the 
Iberian massif (2300 m a.s.l.), which creates a 
dense river network in the catchment boundaries 
and an extended flat surface in the interior. This 
area is characterized by a meso-Mediterranean 
and supra-Mediterranean climate (Rivas-Martínez 
et al., 2004), with a mean annual precipitation of 
650 mm, varying from 300 mm in the central area 
of the main fluvial axis to 1700 mm in the Pyre-
nees Mountains, where snow is abundant in 
winter and early spring (Bejarano et al., 2010). 
The precipitation regime in the Mediterranean 
region has its maxima in autumn and spring and 
minima in winter and summer. Agricultural land 
accounts for 50 % of this territory. 

The Catalan catchments comprises several 
catchments ranging from 72 to 5000 km2, cover-
ing a total area of 16 500 km2 that drains directly 
from the Pyrenees or the Catalan Coastal Chain 
to the sea. This area is dominated by the Mediter-
ranean oceanic climate on the coast and a temper-
ate climate in the mountains. Precipitation 
declines from an annual mean of 1200 mm/year at 
the northern river heads to less than 500 mm/year 
in the southern catchments. Coniferous and 
broadleaf forest, scrubs and grasslands occupy 
more than 60 % of the surface in the northern 
catchments, which are progressively replaced by 
agricultural land in the south.

Hydrologic Data and Hydrological Indices

Several Spanish water agencies and regional 
governments provided series of daily mean flow 
measured at 428 gauging stations. Only gauges 

INTRODUCTION

River flow regime is a key element that structures 
freshwater ecosystems (Poff et al., 1997). Indeed, 
the understanding of the bio-physical associations 
between hydrological variability and stream 
biological communities is a critical scientific and 
management challenge (Alvarez-Cabria et al., 
2017). However, it is frequently the case that 
streamflow data are not available at a site of inter-
est such as where biomonitoring is carried out 
(Poff & Zimmerman, 2010; Sanborn & Bledsoe, 
2006). This hinders the exploration of the flow 
regime influence on stream ecology and ultimate-
ly the management of these systems. 

Natural flow regime can be described through 
a collection of ecologically relevant hydrological 
indices (Olden & Poff, 2003). Hence, interest in 

the prediction of these hydrological indices in 
ungauged streams has grown rapidly in recent 
years (Carlisle et al., 2010; Kennen et al., 2008). 
Most of the work has been aimed at addressing 
water yield and flooding issues. Thus, models to 
predict average flows, flood quantiles, flow dura-
tion curves or low-flow parameters dominate the 
literature (Sanborn & Bledsoe, 2006). In contrast, 
prediction of ecologically relevant hydrological 
indices has received limited attention (Carlisle et 
al., 2010; Knight et al., 2011; Sanborn & Bled-
soe, 2006). 

Multiple linear regression has been the most 
commonly used statistical technique to predict 
hydrological indices in ungauged sites (Knight et 
al., 2011). However, the potential improvement 
in model performance when using other modeling 
procedures that do not assume specific distribu-
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understanding of this technique over other 
machine learning approaches.

CONCLUSION

The application of four modeling techniques to 
predict 16 environmentally meaningful hydrologi-
cal indices evidenced that all techniques might be 
suitable, since they showed similar prediction 
ability. Nonetheless, the accuracy of complex 
modeling techniques equal to that of more classi-
cal methods may be associated with the low 
number of unaltered gauges used to fit the models. 
Expanding this comparison to larger areas with a 
higher number of unaltered gauges will allow the 
actual potential of the most sophisticated methods 
to be analyzed. ANFIS represented a slight 
improvement over MLR, although the computa-
tional cost and level of knowledge required to 
apply the method and interpret the results may 
limit its application. It is widely accepted that 
machine learning techniques are capable of 
dealing with linear and non-linear relationships. 
Hence, we believe that machine learning 
techniques must be considered when they do not 
entail a significant increase in the required 
resources and the links between hydrological 
indices and predictors can be clearly understood. 

On the other hand, not all hydrological indices 
were predicted with the same accuracy, resulting 
in critical implications and limitations depending 
on the further uses of these predictions. Magni-
tude and frequency indices were generally 
predicted with excellent accuracy, which opens a 
promising window to address several freshwater 
management and ecological issues. In contrast, 
none of the employed techniques allowed precise 
models for timing, duration and rate-of-change 
indices to be developed. Therefore, a major effort 
should be made to improve environmental 
databases in order to provide this climatic, 
geological, edaphological and groundwater infor-
mation on the spatio-temporal scales on which 
flow regime patterns are influenced.
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variety of ecological and earth science variables 
have also highlighted that alternative complex 
techniques did not exhibit great differences in 
their prediction accuracy relative to traditional 
modeling approaches (Manel et al., 1999; Mar-
mion et al., 2008). In contrast, other authors have 
found that complex modeling techniques outper-
formed linear approaches for predicting hydrolog-
ical attributes (Booker & Snelder, 2012; Tisseuil 
et al., 2010), fluvial nutrient load (Marce et al., 
2004) or species distribution (Elith et al., 2006). 
Most of these authors emphasized the high flexi-
bility of non-linear techniques in capturing com-
plex relationships between predictor and response 
variables (Elith et al., 2006). However, when the 
underlying data structure and assumptions are met 
for a particular modeling method (e.g., linearity 
for MLR), the application of complex techniques 
does not necessarily produce significant improve-
ments in model performance (Olden & Jackson, 
2002a). This is the case for the hydrological 
indices of magnitude. However, GAMs, RF and 
ANFIS usually outperformed MLR in indices in 
which linearity was rarely achieved, e.g., pred, 
FRE3, dPhigh, nPos and nNeg (Table 3). It must 
be also stressed that GAMs and ANFIS outper-
formed MLR (>5 %) in five and seven out of eight 
magnitude indices, respectively. GAMs allow for 
both linear and non-linear additive response 
shapes (Hastie & Tibshirani, 1986; Wood & 
Augustin, 2002). Hence, despite the linearity of 
several relationships, GAMs were able to tune the 
response more finely in specific sections where 
relationships were not linear. 

The small gains in predictive performance of 
complex modeling, i.e., machine learning, 
techniques can be attributed to the low number of 
training sites (Kampichler et al., 2010). Since 
machine learning techniques are viewed as 
data-intensive methods and the spatial availability 
of hydrological data sets is typically small, their 
application is limited. In this sense, studies in 
which complex modeling methods outperformed 
linear approaches have presented a number of 
sites on a scale of thousands (e.g., Prasad et al., 
2006), which contrasts with the 156 sites used in 
this work. Therefore, the application of these 
kinds of methods is promising where spatial 
coverage of hydrological data is substantial.  

Beyond the predictive performance of the 
models, other characteristics such as the statistical 
skills needed to develop them and interpret the 
results must be taken into account when selecting 
the optimal modeling technique. For instance, 
ANFIS required the definition of the number and 
shape of MF, and it is recommended (Marcé et al., 
2004) that these processes be carried out through 
an independent cross-validation process, as 
achieved in this work. On the other hand, the 
application of MLR involves complying with the 
assumptions of normality, homoscedasticity, inde-
pendence and linearity, which was accomplished 
through different transformations (Tables 1 and 
2). Given the disparity in the nature of hydrologi-
cal indices and environmental data, no single 
transformation could be applied systematically 
and, as shown here, transformation does not 
always assure compliance with assumptions. In 
contrast, RF was the only fully automated tech-
nique, in which the distribution of the variables 
does not have to comply with any assumption 
(Breiman, 2001), which reduces the time needed 
and facilitates its application by users who are not 
specialists in statistics. Lastly, the ability of each 
technique to identify the actual relationships 
between the hydrological indices and the environ-
mental variables must be taken into account. The 
four techniques agreed in the identification of the 
most important predictors for most of the models. 
However, MLR and GAMs allow straightforward 
relationships between predictors and response 
variables to be set (Manel et al., 1999). In contrast, 
machine learning methods have been largely seen 
as “black boxes.” For instance, the development 
of ANFIS models and the understanding of results 
require substantial time and knowledge, although 
enormous progress has been made in understand-
ing the relationships underlying this technique 
(Marce et al., 2004; Olden & Jackson, 2002b). On 
the other hand, RF results form an ensemble of 
regression trees and may also become a black box 
when interpreting the results (Prasad et al., 2006). 
Nonetheless, the ‘randomForest’ package of R 
statistical software incorporates specific functions 
to numerically and graphically visualize the 
marginal effect of each predictor variable on the 
response (e.g., Alvarez-Cabria et al., 2016). These 
features definitively facilitate the application and 

MA and MH indices is related to their dependence 
on precipitation events and direct catchment 
runoff (Tisseuil et al., 2010). Precipitation 
variables were derived from 1000x1000-m precip-
itation grids and it was demonstrated that they 
were precise enough to produce reliable models. In 
this regard, there are several previous studies that 
have found strong relationships between hydrolog-
ical variables and climatic predictor attributes 
(Carlise et al., 2010: Reidy-Liermann et al., 2011; 
Sanborn & Bledsoe, 2006). For instance, 
Reidy-Lierman et al. (2011) found that spring 
precipitation was the most important variable for 
discriminating rivers dominated by rain, snowmelt 
or mixed rivers. This agreed with our findings that 
Pre4 was among the most important variables for 
predicting flow magnitude, as all these river types 
can be found in this study area (Bejarano et al., 
2010). Moreover, Solans & Poff (2015) and Beja-
rano et al. (2010) found that the segregation of 
river types in the Ebro Basin is largely explained 
by the variability of climatic predictors such as 
temperature, evapotranspiration and precipitation. 
In this regard, the high gradient of EvMx and 
PreSu values that prevails from the oceanic west-
ern part to the eastern Mediterranean sector plays 
a significant role in the discrimination of flow 
magnitudes across the study area.

On the other hand, the errors of ML index 
models have been relatively high. In most 
instances, significant correlations between ML 
indices and soil and geology characteristics have 
been observed in previous works (Clausen & 
Pearson, 1995; Kroll et al., 2004, Lane et al., 
2017). The inclusion of these variables allowed 
prediction performances comparable to those 
showed by MA and MH indices to be obtained 
(Knight et al., 2011; Sanborn & Bledsoe, 2006). 
It is likely that the small contribution of these 
variables in the present study was due to the low 
precision of the geology and soil data rather than 
the lack of causal links. The most detailed soil 
and geology maps in the study area have a 1:200 
000 scale, which contrasts with the accuracy of 
the topography (25x25-m DEM), climatic 
(1000x1000-m grid) and land-use (1:25 000) data 
sources. Thus, we believe that improving soil and 
subsurface geology information should lead to 
improvements in modeling ML indices. 

Regressions carried out elsewhere (Knight et 
al., 2011; Sanborn & Bledsoe, 2006) have encoun-
tered difficulties in accurately predicting frequen-
cy indices, while we were able to predict FRE3 
with a reasonable accuracy. The most important 
predictor variables for FRE3 were ele and pre, 
which agreed with results highlighted in previous 
studies (Carlisle et al., 2010; Knight et al., 2011; 
Ourada et al., 2001). This result is not surprising, 
as the combination of peak flows of nonsynchro-
nous tributaries in the travel of flows downstream, 
i.e. to river segments showing lower elev, has been 
observed to attenuate and dampen flow peaks, 
reducing the number of times a flow overcomes a 
threshold (Naiman et al., 1998; Poff et al., 1997).

However, it must be also pointed out that 
FRE3 takes into account moderate-high flow 
events that usually last several days. The duration 
of these events contrasts with the time scale of the 
commonly available climate database. For 
instance, in our study area only mean monthly 
precipitation series were available, which presum-
ably lacked the proper time scale to characterize 
these events. Hence, the availability of daily 
precipitation data and its inclusion in models simi-
lar to those used in this study could be assumed to 
be highly beneficial for predicting these indices. 

In addition, the lack of proper predictor 
variables has probably been the critical element 
hindering the development of more accurate 
models for the duration, rate-of-change and 
timing indices. For these three groups of hydro-
logical indices, predictor variables derived from 
precipitation series (PreMx, PreMn and MPrRn) 
were the most contributing variables. Given these 
results, it could be speculated that that the wettest 
areas presented longer high-flow and shorter 
low-flow events, along with a higher rate of flow 
rise and fall, than zones where precipitation is 
scarce. However, even if these relationships may 
seem obvious and expected, they cannot be 
assured with certainty due to the low accuracy of 
the obtained models.  

Comparison of modeling techniques

Our analysis demonstrated that there was not an 
optimal technique to predict all hydrological 
indices. Several works focused on modeling a 

RESULTS

Model performance and predictor variables

The results exhibited a wide range of predictive 
performance, with adjusted R2s ranging from 
0.16 (MLR-Pred) to 0.88 (ANFIS-M4 and 
ANFIS-30HF; Table 3). However, all the models 
presented a level of significance p-value<0.01 
when tested against the F statistic hypothesis. 
Model performance was higher when predicting 
the flow magnitude (MA, MH and ML) and 
frequency indices (FH: FRE7) than when predict-
ing the timing (T: JMax; JMin and Pred), dura-
tion (DH: dPHigh and DL: dPLow) and 
rate-of-change (RC: nPos and nNeg) indices 
(K-W chi-squared=57.9, df=7, p-value<0.001; 
Table 3). In addition, for each hydrological index, 
the predictor variables kept the order of impor-
tance regardless of the modeling technique used. 
In this regard, it must be highlighted that, accord-
ing to the Person correlation values, neither of the 
geology variables, Perm and Hard, were selected 
within the set of 6 initial predictor variables. The 
MA (except for M9) and MH indices were 
predicted with excellent accuracy, showing 
adjusted R2s that commonly exceeded 0.8. In 
contrast, models of 30LF and X95 registered 
lower adjusted R2s, which ranged from 15 to 25 
% below those of the MA and MH indices. Are, 
annual (Pre), summer (PreSu) and April precipi-
tation (Pre4) were the most important variables in 
practically all the flow magnitude models, espe-
cially those developed for MA and MH. On the 
other hand, when predicting the M9 and ML 
indices, other environmental variables such as 
gra, EvMx and QPrRn presented high contribu-
tion rates to the models. The timing index models 
presented the lowest predictive performances 
(Table 3). In general, adjusted R2s for the JMax 
and JMin indices were not greater than 0.2, while 
the best model for Pred reached 0.4 (Table 3). Pre 
and MPrRn were selected in all models for Jmax. 
MPrRn, Eva and Ele were commonly included in 
the models for JMin. Pred was related mainly to 
PreMx and Gra. FRE3 was predicted with a max-
imum adjusted R2 of 0.71 (Table 3), and the most 
influential variables were Ele, PrMx and QPrRn. 
Models for predicting dPHigh and dPlow rarely 

reached an adjusted R2 over 0.3, and PrMx and 
PrMn were the most contributing variables, 
respectively (Table 3). Finally, models for nPos 
and nNeg showed adjusted R2s close to 0.5 (Table 
3). Pre, Ele and MPrRn were the most influential 
variables in all of these models. 

Comparison of modeling techniques

Differences in prediction accuracy among the 
different modeling techniques were not large 
(K-W chi-squared=1.44, df=3, p-value=0.7; Table 
3). However, although differences were not signif-
icant, it must be remarked that the GAMs and 
ANFIS techniques outperformed MLR by more 
than 5 % of the adjusted R2 in 10 and 13 hydrolog-
ical indices, respectively. The greatest improve-
ment in the predictive performance of these two 
techniques with respect to MLR was observed for 
the magnitude indices. ANFIS presented a mean 
increase of 7 % in the adjusted R2 compared to 
MLR in all the magnitude indices, but this only 
resulted in marginal differences (K-W 
chi-squared=2.8487, df=1, p-value=0.09). If only 
the MA and MH indices were considered, the 
differences in performance between MLR and 
ANFIS reached up to more than 10%, and signifi-
cant differences were observed (K-W 
chi-squared=5.13, df=1, p-value=0.02). Differ-
ences between MLR and GAMs that resulted in 
improvements in adjusted R2s beyond 5 % were 
found only for the MA and MH indices (WK-W 
chi-squared=6.72, df=1, p-value=0.01). In addi-
tion, ANFIS and GAMs outperformed MLR in 
one or several of the other index types (T, F and 
RC). On the other hand, RF did not show signifi-
cant enhancements in relation to MLR (K-W 
chi-squared=0.017439, df=1, p-value=0.8949). 

DISCUSSION

Model performance and predictor variables

This study confirms the findings of other works 
that not all the hydrological indices present the 
same potential to be predicted (Carlisle et al., 
2010; Yadav et al., 2007). Among the magnitude 
indices, MA and MH outperformed the ML 
indices. The high predictive performance of the 

leaving out one gauge at a time, developing a new 
model based on the remaining 155 observations 
and finally estimating the hydrological index for 
the left-out gauge. The results from this proce-
dure produced estimates of each hydrological 
metric as if the gauging station were an ungauged 
site. The variation between observed and predict-
ed values represents the uncertainty with which 
the model would be applied to predict index 
values at ungauged sites (Carlisle et al., 2010) 
and allows an assessment of the robustness of 
each method for estimating hydrological indices. 

We employed the root-mean-square-deviance 
(RMSD) and the adjusted R2 to assess the corre-
spondence between observed and estimated 
values as a relative performance of each model, 
following other authors (Carlisle et al., 2010; 
Sanborn & Bledsoe, 2006; Van Sickle et al., 
2006). Hence, models producing the lowest 
RMSD and the highest adjusted R2 were deemed 
superior. In addition, we used Kruscal-Wallis to 
test whether the differences in adjusted R2 found 
between the modeled indices and modeling 
techniques were significant.

homogeneous as possible based on series of 
binary rules. RF introduces random variation to 
CARTs by growing a defined number of trees 
with a bootstrap sample of the training data and a 
random sample of the predictors. The importance 
of the predictor variables is evaluated by random-
ly permuting each predictor variable in turn and 
predicting the response of the bootstrap sample 
observations. The decrease in prediction perfor-
mance is the measure of importance of the origi-
nal variable. Non-transformed response or 
predictor variables were used in the RF models.

Adaptive Neuro-Fuzzy Inference System (ANFIS)

ANFIS combines qualitative aspects of human 
knowledge from Fuzzy Inference Systems (FISs) 
with an effective, advanced machine learning 
method (neural networks) to adjust and tune these 
rules (Jang, 1993). 

A FIS is based on fuzzy decision rules and the 
fuzzy reasoning unit (Jang, 1993). The fuzzy 
decision rules (if-then rules) are rules expressed 
in the form “if X (input variable) is A then Y 
(output variable) is B”, where A (premise) and B 
(consequence) are linguistic values (e.g., high 
and low). Fuzzy logic allows, within these 
decision rules, any judgment state to take values 
between 0 and 1 according to its probability. In 
this regard, Membership Functions (MFs) are the 
functions that relate a variable to the probabilities 
associated with the judgment states.  

Fuzzy reasoning is an inference procedure 
used to derive conclusions from a set of fuzzy 
decision rules. The steps of fuzzy reasoning 
performed by a FIS are (Jang, 1993; Marce et al., 
2004):

1. Compare the input variables with the 
MFs in the premise part of the fuzzy rules to 
obtain the probability of each linguistic label 
(fuzzification).

2. Combine (through logic operators) the 
probability in the premise part to get the weight of 
each rule. 

3. Generate the qualified consequent of 
each rule depending on its weight.

4. Aggregate the qualified consequents to 
produce a crisp output (defuzzification). 

Given an input-output problem, the construc-

tion of a FIS has two fundamental steps: the spec-
ification of an appropriate number and type of 
input and output MFs (structure identification) 
and the specification of the shape of the MFs 
(parameter estimation). The structure identifica-
tion was solved by applying a trial-and-error 
procedure and a conservative criterion (i.e., mini-
mum number of parameters in the best fit). More-
over, since the maximum number of parameters 
to be fitted increases exponentially with the 
number of variables and MFs and the total 
number of parameters should not exceed 1/6 the 
number of cases (Marce et al., 2004), a maximum 
of 3 MFs was established.  Once the model struc-
ture, i.e., number of MFs, was defined, we 
estimated the parameters corresponding to each 
MF through the use of a numerical method called 
the Hybrid Learning Method (Marce et al., 2004). 
Specifically, these parameters were defined using 
adaptive neural networks algorithms. To avoid 
overfitting problems during the estimation of 
these parameters, the data set was randomly split 
into a training set (2/3 of the data set) used to fit 
the values and a trial set (1/3 of the data), which 
was not used by the hybrid learning algorithm. 
The splitting procedure was repeated 200 times 
and each time the parameters were adjusted 
individually. The hydrological indices were 
converted to the range (0 1), while the environ-
mental variables were converted to z-scores (i.e., 
mean=0, standard deviation=1) according to 
ANFIS requirements. Finally, to obtain the 
importance of the predictors in each model, envi-
ronmental variables were removed from the 
model one at a time while holding all other 
predictor variables. Then, for each model we 
calculated the predictive performance through the 
adjusted R2. The larger the decrease of predictive 
performance, the greater the assumed importance 
of that variable. 

Validation and evaluation of model perfor-
mance

A jackknife cross–validation procedure was 
performed with R statistical software to test the 
predictive performance of each modeling 
technique for the 16 hydrological indices. This 
cross-validation procedure was applied by 

Environmental variables (predictors)

Several studies have highlighted the importance 
of climate, topography, land cover and geology 
on the hydrological regime regardless of 
geographic location (Kennard et al., 2010; Lane 
et al., 2017; Sanborn & Bledsoe, 2006). Thus, 
environmental variables were used to explain the 
hydrological character of the recorded flow series 
and predict this character in the entire river 
network. A synthetic river network (SRN) was 
delineated using a 25-m digital elevation model 
(DEM) with the NestStream program (Benda et 
al., 2007). The SRN comprised 667 406 segments 
with lengths ranging from 16 to 800 m and was 
used as a spatial network to integrate the hydro-
logical and environmental information. Predictor 
variables were extracted from existing databases 
provided by several national and regional institu-
tions. The predictor variables for each segment 
represented the mean value of the variables in the 
upstream catchment. A set of 19 variables was 
selected (Table 2); detailed information regarding 
the units, scale and sources of information can be 
found in Peñas et al. (2014).

In addition, according to the maximum 
number of degrees of freedom allowed by the 
different techniques, a maximum of 6 predictor 
variables was established for the models. The 
selection of these 6 variables was based on the 
combination of scatter plots (hydrological 
indices versus environmental variables) and 
parametric correlations to identify the environ-
mental variables that were most meaningful for 
the prediction of each dependent variable (Knight 
et al., 2011). In this regard, the Pearson correla-
tion values between the hydrological indices and 
the predictor variables were used as the main 
screening criterion. Hence, for each hydrological 
index, we selected the 6 predictor variables with 
the highest correlation values. 

Modeling Techniques

The predictive performance of 4 distinct 
techniques to model hydrological indices was 
compared in this study. Modeling and statistical 
analysis were performed with R statistical 
software using the stats (v.3.3.2), gam (v.1.14) 

and randomForest (v.4.6 ) packages, except in the 
case of ANFIS models, which were developed 
using functions from the Mathwork´s MATLAB 
Fuzzy Logic Toolbox (FLT) included in a 
MATLAB code programmed by Marcé et al. 
(2004) and adapted by the authors to carry out the 
specific analyses performed in this study. The 
following section briefly describes each of the 
five modeling techniques.

Multiple Linear Regression (MLR)

MLR assumes a linear relationship between the 
predictor and the response variables through the 
estimation of parameters for each predictor. 
Specific transformations (Tables 1 and 2) were 
applied to meet the assumptions (normality, inde-
pendence and homoscedasticity) for applying 
MLR. If data did not meet the assumptions 
through any transformation, that which was 
closest to meeting these requirements was used. 
The relative importance of each variable was 
established based on the comparison of the 
regression test statistic T value. 

Generalized Additive Models (GAMs)

GAMs are semi-parametric models (Hastie & 
Tibshirani, 1986) that relate the predictor and 
dependent variable through a link function and 
estimate a non-parametric function for each 
predictor in order to adapt it to the local behavior 
of the regression function in several regions (Ven-
ables & Dichmont, 2004). The identity link func-
tion of the Gaussian family was applied to the 
transformed variables using the same transforma-
tions as in MLR, given that they were assumed to 
be normally distributed. Thin plate regression 
splines were used with a maximum of 3 degrees of 
freedom. Parallel to MLR, the relative importance 
of each variable was established based in the com-
parison of the regression test statistic T value. 

Random Forest (RF)

RF (Breiman, 2001) comprises an ensemble of 
individual Classification and Regression Trees 
(CARTs). CARTs split the dimensional space 
defined by the predictors into groups that are as 

unaffected by impoundments or significant 
abstraction upstream were selected for analysis. 
In addition, we selected gauges with data avail-
able for the 1976-2010 period and analyzed the 
quality of the series (Peñas et al., 2014). Finally, 
156 gauges were selected, which accounted for an 
average length of 17 years of data (Fig. 1).

It was beyond the scope of this study to 

predict and evaluate all the hydrological indices 
currently in use (see Olden & Poff, 2003); there-
fore, we selected one or several indices represent-
ing each of the five ecologically relevant aspects 
of the flow regime, i.e., magnitude, timing, 
frequency, duration and rate of change (Olden & 
Poff, 2003; Table 1).

tion fittings has been pointed out (Sanborn & 
Bledsoe, 2006). There are many examples of the 
use of other modeling and machine learning 
techniques to model many environmental issues 
(e.g., Alvarez-Cabria et al., 2016; Elith et al., 
2006; Manel et al., 1999, Marcé et al., 2004). In 
contrast, their application in the prediction of 
hydrological indices has been limited, although 
they could provide important benefits in this field 
(Alcázar et al., 2008; Heuvelmans et al., 2006; 
Snelder et al., 2009).

In this study we concentrated on developing 
statistical models for 16 hydrological indices 
covering the 5 ecologically relevant hydrologic 
attributes (i.e., magnitude, timing, frequency, 
duration and rate of change; Poff et al., 1997). We 
used one traditional technique (Multiple Linear 
Regression (MLR) and three more complex 
techniques that apply contrasting rationale to 
model the distribution of the response variable: 
Generalized Additive Models (GAMs), Random 
Forest (RF) and Adaptive Neuro-Fuzzy Inference 
System (ANFIS). Therefore, the objectives of this 
study were to 1) explore the ability of models to 
predict different types of hydrological indices and 
2) compare the performance of 5 modeling 
techniques to predict 16 hydrological indices at 
ungauged sites. 

METHODS

Study Area

The study area comprises the catchments of the 
northern third of the Iberian Peninsula (Fig. 1), 
covering a total area greater than 124 000 km2. It 
includes a heterogeneous set of environmental 
conditions. 

The area draining into the Cantabrian Sea 
encompasses several catchments with drainage 
areas ranging from 30 to 4907 km2, covering a 
total area of 22 000 km2. The rivers are confined 
by the Cantabrian Cordillera, which reaches up to 
2600 m a.s.l. and runs parallel to the coast. Thus, 
they are characterized by high slopes and short 
main stream lengths. The climate varies from 
thermo-temperate Atlantic on the coast to oro- 
and supra-temperate in the inner regions 
(Rivas-Martínez et al., 2004). Precipitation is 

abundant throughout the year with a mean of 
1300 mm/year, with maximum rainfall in Decem-
ber (150 mm/month) and minimum in July (50 
mm/month). Snowfall is frequent in winter above 
1000 m a.s.l. More than 50 % of the surface is 
covered by deciduous forest, scrubs and grass-
lands, while 10 % is occupied by agriculture. 

Meanwhile, the Mediterranean area is mainly 
covered by the Ebro catchment, along with a set 
of medium-sized basins in the east coast. The 
Ebro catchment covers a total area of 85 530 km2. 
It is enclosed by the Cantabrian Mountains and 
the Pyrenees (3400 m a.s.l.) in the north, the Cata-
lan Coastal Chain (1712 m a.s.l.) in the east, and 
from the north-west to the south-east by the 
Iberian massif (2300 m a.s.l.), which creates a 
dense river network in the catchment boundaries 
and an extended flat surface in the interior. This 
area is characterized by a meso-Mediterranean 
and supra-Mediterranean climate (Rivas-Martínez 
et al., 2004), with a mean annual precipitation of 
650 mm, varying from 300 mm in the central area 
of the main fluvial axis to 1700 mm in the Pyre-
nees Mountains, where snow is abundant in 
winter and early spring (Bejarano et al., 2010). 
The precipitation regime in the Mediterranean 
region has its maxima in autumn and spring and 
minima in winter and summer. Agricultural land 
accounts for 50 % of this territory. 

The Catalan catchments comprises several 
catchments ranging from 72 to 5000 km2, cover-
ing a total area of 16 500 km2 that drains directly 
from the Pyrenees or the Catalan Coastal Chain 
to the sea. This area is dominated by the Mediter-
ranean oceanic climate on the coast and a temper-
ate climate in the mountains. Precipitation 
declines from an annual mean of 1200 mm/year at 
the northern river heads to less than 500 mm/year 
in the southern catchments. Coniferous and 
broadleaf forest, scrubs and grasslands occupy 
more than 60 % of the surface in the northern 
catchments, which are progressively replaced by 
agricultural land in the south.

Hydrologic Data and Hydrological Indices

Several Spanish water agencies and regional 
governments provided series of daily mean flow 
measured at 428 gauging stations. Only gauges 

INTRODUCTION

River flow regime is a key element that structures 
freshwater ecosystems (Poff et al., 1997). Indeed, 
the understanding of the bio-physical associations 
between hydrological variability and stream 
biological communities is a critical scientific and 
management challenge (Alvarez-Cabria et al., 
2017). However, it is frequently the case that 
streamflow data are not available at a site of inter-
est such as where biomonitoring is carried out 
(Poff & Zimmerman, 2010; Sanborn & Bledsoe, 
2006). This hinders the exploration of the flow 
regime influence on stream ecology and ultimate-
ly the management of these systems. 

Natural flow regime can be described through 
a collection of ecologically relevant hydrological 
indices (Olden & Poff, 2003). Hence, interest in 

the prediction of these hydrological indices in 
ungauged streams has grown rapidly in recent 
years (Carlisle et al., 2010; Kennen et al., 2008). 
Most of the work has been aimed at addressing 
water yield and flooding issues. Thus, models to 
predict average flows, flood quantiles, flow dura-
tion curves or low-flow parameters dominate the 
literature (Sanborn & Bledsoe, 2006). In contrast, 
prediction of ecologically relevant hydrological 
indices has received limited attention (Carlisle et 
al., 2010; Knight et al., 2011; Sanborn & Bled-
soe, 2006). 

Multiple linear regression has been the most 
commonly used statistical technique to predict 
hydrological indices in ungauged sites (Knight et 
al., 2011). However, the potential improvement 
in model performance when using other modeling 
procedures that do not assume specific distribu-

Table 3.   Predictive accuracy of the 16 hydrological indices using 4 different modeling techniques. The accuracy is compared according 
to the adjusted R2 and the RMSD (Root Mean Square Distance). Increases in adjusted R2 beyond 5 % with respect to the MLR are 
represented by bold letters. All models presented significant results (p-value<0.01) in Fisher statistical testing. Capacidad predictiva de 
los 16 índices hidrológicos utilizando 4 técnicas de modelado diferentes. La comparación de la capacidad predictiva se ha realizado 
mediante el R2 ajustado y la distancia cuadrática media. Aumentos en el valor del R2 ajustado por encima del 5 % respcto al del RLM 
se representa en negrita. Todos los modelos presentaron resultados significativos (p-valor<0.01) en el test de Fisher.

MLR GAM RF ANFIS

Index Adj r2 RMSD Adj r2 RMSD Adj r2 RMSD Adj r2 RMSD
l1 0.77 2.99 0.82 2.67 0.78 2.95 0.87 2.21

l2 0.74 1.79 0.80 1.56 0.75 1.73 0.79 1.59

M4 0.74 4.88 0.80 4.32 0.72 5.02 0.88 3.37

M9 0.73 1.07 0.76 1.01 0.72 1.09 0.74 1.05

30LF 0.58 0.67 0.59 0.52 0.60 0.66 0.63 0.62

X95 0.54 0.55 0.54 0.54 0.52 0.58 0.60 0.51

30HF 0.77 9.05 0.82 8.04 0.75 9.59 0.88 6.48

X5 0.75 10.55 0.80 9.27 0.74 10.73 0.84 70.89

JMax 0.18 21.94 0.18 22.14 0.15 22.14 0.19 21.73

JMin 0.19 17.63 0.19 17.65 0.19 17.66 0.25 17.01

Pred 0.16 0.13 0.33 0.12 0.32 0.12 0.41 0.11

FRE3 0.63 1.1 0.71 0.97 0.65 1.16 0.69 1.02

dPHigh 0.24 4.94 0.29 4.82 0.37 4.50 0.30 4.74

dPLow 0.30 25.29 0.32 24.72 0.28 25.62 0.27 25.81

nPos 0.46 12.47 0.51 11.94 0.53 11.72 0.54 11.50

nNeg 0.45 12.55 0.51 11.97 0.52 11.83 0.50 12.13
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understanding of this technique over other 
machine learning approaches.

CONCLUSION

The application of four modeling techniques to 
predict 16 environmentally meaningful hydrologi-
cal indices evidenced that all techniques might be 
suitable, since they showed similar prediction 
ability. Nonetheless, the accuracy of complex 
modeling techniques equal to that of more classi-
cal methods may be associated with the low 
number of unaltered gauges used to fit the models. 
Expanding this comparison to larger areas with a 
higher number of unaltered gauges will allow the 
actual potential of the most sophisticated methods 
to be analyzed. ANFIS represented a slight 
improvement over MLR, although the computa-
tional cost and level of knowledge required to 
apply the method and interpret the results may 
limit its application. It is widely accepted that 
machine learning techniques are capable of 
dealing with linear and non-linear relationships. 
Hence, we believe that machine learning 
techniques must be considered when they do not 
entail a significant increase in the required 
resources and the links between hydrological 
indices and predictors can be clearly understood. 

On the other hand, not all hydrological indices 
were predicted with the same accuracy, resulting 
in critical implications and limitations depending 
on the further uses of these predictions. Magni-
tude and frequency indices were generally 
predicted with excellent accuracy, which opens a 
promising window to address several freshwater 
management and ecological issues. In contrast, 
none of the employed techniques allowed precise 
models for timing, duration and rate-of-change 
indices to be developed. Therefore, a major effort 
should be made to improve environmental 
databases in order to provide this climatic, 
geological, edaphological and groundwater infor-
mation on the spatio-temporal scales on which 
flow regime patterns are influenced.
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variety of ecological and earth science variables 
have also highlighted that alternative complex 
techniques did not exhibit great differences in 
their prediction accuracy relative to traditional 
modeling approaches (Manel et al., 1999; Mar-
mion et al., 2008). In contrast, other authors have 
found that complex modeling techniques outper-
formed linear approaches for predicting hydrolog-
ical attributes (Booker & Snelder, 2012; Tisseuil 
et al., 2010), fluvial nutrient load (Marce et al., 
2004) or species distribution (Elith et al., 2006). 
Most of these authors emphasized the high flexi-
bility of non-linear techniques in capturing com-
plex relationships between predictor and response 
variables (Elith et al., 2006). However, when the 
underlying data structure and assumptions are met 
for a particular modeling method (e.g., linearity 
for MLR), the application of complex techniques 
does not necessarily produce significant improve-
ments in model performance (Olden & Jackson, 
2002a). This is the case for the hydrological 
indices of magnitude. However, GAMs, RF and 
ANFIS usually outperformed MLR in indices in 
which linearity was rarely achieved, e.g., pred, 
FRE3, dPhigh, nPos and nNeg (Table 3). It must 
be also stressed that GAMs and ANFIS outper-
formed MLR (>5 %) in five and seven out of eight 
magnitude indices, respectively. GAMs allow for 
both linear and non-linear additive response 
shapes (Hastie & Tibshirani, 1986; Wood & 
Augustin, 2002). Hence, despite the linearity of 
several relationships, GAMs were able to tune the 
response more finely in specific sections where 
relationships were not linear. 

The small gains in predictive performance of 
complex modeling, i.e., machine learning, 
techniques can be attributed to the low number of 
training sites (Kampichler et al., 2010). Since 
machine learning techniques are viewed as 
data-intensive methods and the spatial availability 
of hydrological data sets is typically small, their 
application is limited. In this sense, studies in 
which complex modeling methods outperformed 
linear approaches have presented a number of 
sites on a scale of thousands (e.g., Prasad et al., 
2006), which contrasts with the 156 sites used in 
this work. Therefore, the application of these 
kinds of methods is promising where spatial 
coverage of hydrological data is substantial.  

Beyond the predictive performance of the 
models, other characteristics such as the statistical 
skills needed to develop them and interpret the 
results must be taken into account when selecting 
the optimal modeling technique. For instance, 
ANFIS required the definition of the number and 
shape of MF, and it is recommended (Marcé et al., 
2004) that these processes be carried out through 
an independent cross-validation process, as 
achieved in this work. On the other hand, the 
application of MLR involves complying with the 
assumptions of normality, homoscedasticity, inde-
pendence and linearity, which was accomplished 
through different transformations (Tables 1 and 
2). Given the disparity in the nature of hydrologi-
cal indices and environmental data, no single 
transformation could be applied systematically 
and, as shown here, transformation does not 
always assure compliance with assumptions. In 
contrast, RF was the only fully automated tech-
nique, in which the distribution of the variables 
does not have to comply with any assumption 
(Breiman, 2001), which reduces the time needed 
and facilitates its application by users who are not 
specialists in statistics. Lastly, the ability of each 
technique to identify the actual relationships 
between the hydrological indices and the environ-
mental variables must be taken into account. The 
four techniques agreed in the identification of the 
most important predictors for most of the models. 
However, MLR and GAMs allow straightforward 
relationships between predictors and response 
variables to be set (Manel et al., 1999). In contrast, 
machine learning methods have been largely seen 
as “black boxes.” For instance, the development 
of ANFIS models and the understanding of results 
require substantial time and knowledge, although 
enormous progress has been made in understand-
ing the relationships underlying this technique 
(Marce et al., 2004; Olden & Jackson, 2002b). On 
the other hand, RF results form an ensemble of 
regression trees and may also become a black box 
when interpreting the results (Prasad et al., 2006). 
Nonetheless, the ‘randomForest’ package of R 
statistical software incorporates specific functions 
to numerically and graphically visualize the 
marginal effect of each predictor variable on the 
response (e.g., Alvarez-Cabria et al., 2016). These 
features definitively facilitate the application and 

MA and MH indices is related to their dependence 
on precipitation events and direct catchment 
runoff (Tisseuil et al., 2010). Precipitation 
variables were derived from 1000x1000-m precip-
itation grids and it was demonstrated that they 
were precise enough to produce reliable models. In 
this regard, there are several previous studies that 
have found strong relationships between hydrolog-
ical variables and climatic predictor attributes 
(Carlise et al., 2010: Reidy-Liermann et al., 2011; 
Sanborn & Bledsoe, 2006). For instance, 
Reidy-Lierman et al. (2011) found that spring 
precipitation was the most important variable for 
discriminating rivers dominated by rain, snowmelt 
or mixed rivers. This agreed with our findings that 
Pre4 was among the most important variables for 
predicting flow magnitude, as all these river types 
can be found in this study area (Bejarano et al., 
2010). Moreover, Solans & Poff (2015) and Beja-
rano et al. (2010) found that the segregation of 
river types in the Ebro Basin is largely explained 
by the variability of climatic predictors such as 
temperature, evapotranspiration and precipitation. 
In this regard, the high gradient of EvMx and 
PreSu values that prevails from the oceanic west-
ern part to the eastern Mediterranean sector plays 
a significant role in the discrimination of flow 
magnitudes across the study area.

On the other hand, the errors of ML index 
models have been relatively high. In most 
instances, significant correlations between ML 
indices and soil and geology characteristics have 
been observed in previous works (Clausen & 
Pearson, 1995; Kroll et al., 2004, Lane et al., 
2017). The inclusion of these variables allowed 
prediction performances comparable to those 
showed by MA and MH indices to be obtained 
(Knight et al., 2011; Sanborn & Bledsoe, 2006). 
It is likely that the small contribution of these 
variables in the present study was due to the low 
precision of the geology and soil data rather than 
the lack of causal links. The most detailed soil 
and geology maps in the study area have a 1:200 
000 scale, which contrasts with the accuracy of 
the topography (25x25-m DEM), climatic 
(1000x1000-m grid) and land-use (1:25 000) data 
sources. Thus, we believe that improving soil and 
subsurface geology information should lead to 
improvements in modeling ML indices. 

Regressions carried out elsewhere (Knight et 
al., 2011; Sanborn & Bledsoe, 2006) have encoun-
tered difficulties in accurately predicting frequen-
cy indices, while we were able to predict FRE3 
with a reasonable accuracy. The most important 
predictor variables for FRE3 were ele and pre, 
which agreed with results highlighted in previous 
studies (Carlisle et al., 2010; Knight et al., 2011; 
Ourada et al., 2001). This result is not surprising, 
as the combination of peak flows of nonsynchro-
nous tributaries in the travel of flows downstream, 
i.e. to river segments showing lower elev, has been 
observed to attenuate and dampen flow peaks, 
reducing the number of times a flow overcomes a 
threshold (Naiman et al., 1998; Poff et al., 1997).

However, it must be also pointed out that 
FRE3 takes into account moderate-high flow 
events that usually last several days. The duration 
of these events contrasts with the time scale of the 
commonly available climate database. For 
instance, in our study area only mean monthly 
precipitation series were available, which presum-
ably lacked the proper time scale to characterize 
these events. Hence, the availability of daily 
precipitation data and its inclusion in models simi-
lar to those used in this study could be assumed to 
be highly beneficial for predicting these indices. 

In addition, the lack of proper predictor 
variables has probably been the critical element 
hindering the development of more accurate 
models for the duration, rate-of-change and 
timing indices. For these three groups of hydro-
logical indices, predictor variables derived from 
precipitation series (PreMx, PreMn and MPrRn) 
were the most contributing variables. Given these 
results, it could be speculated that that the wettest 
areas presented longer high-flow and shorter 
low-flow events, along with a higher rate of flow 
rise and fall, than zones where precipitation is 
scarce. However, even if these relationships may 
seem obvious and expected, they cannot be 
assured with certainty due to the low accuracy of 
the obtained models.  

Comparison of modeling techniques

Our analysis demonstrated that there was not an 
optimal technique to predict all hydrological 
indices. Several works focused on modeling a 

RESULTS

Model performance and predictor variables

The results exhibited a wide range of predictive 
performance, with adjusted R2s ranging from 
0.16 (MLR-Pred) to 0.88 (ANFIS-M4 and 
ANFIS-30HF; Table 3). However, all the models 
presented a level of significance p-value<0.01 
when tested against the F statistic hypothesis. 
Model performance was higher when predicting 
the flow magnitude (MA, MH and ML) and 
frequency indices (FH: FRE7) than when predict-
ing the timing (T: JMax; JMin and Pred), dura-
tion (DH: dPHigh and DL: dPLow) and 
rate-of-change (RC: nPos and nNeg) indices 
(K-W chi-squared=57.9, df=7, p-value<0.001; 
Table 3). In addition, for each hydrological index, 
the predictor variables kept the order of impor-
tance regardless of the modeling technique used. 
In this regard, it must be highlighted that, accord-
ing to the Person correlation values, neither of the 
geology variables, Perm and Hard, were selected 
within the set of 6 initial predictor variables. The 
MA (except for M9) and MH indices were 
predicted with excellent accuracy, showing 
adjusted R2s that commonly exceeded 0.8. In 
contrast, models of 30LF and X95 registered 
lower adjusted R2s, which ranged from 15 to 25 
% below those of the MA and MH indices. Are, 
annual (Pre), summer (PreSu) and April precipi-
tation (Pre4) were the most important variables in 
practically all the flow magnitude models, espe-
cially those developed for MA and MH. On the 
other hand, when predicting the M9 and ML 
indices, other environmental variables such as 
gra, EvMx and QPrRn presented high contribu-
tion rates to the models. The timing index models 
presented the lowest predictive performances 
(Table 3). In general, adjusted R2s for the JMax 
and JMin indices were not greater than 0.2, while 
the best model for Pred reached 0.4 (Table 3). Pre 
and MPrRn were selected in all models for Jmax. 
MPrRn, Eva and Ele were commonly included in 
the models for JMin. Pred was related mainly to 
PreMx and Gra. FRE3 was predicted with a max-
imum adjusted R2 of 0.71 (Table 3), and the most 
influential variables were Ele, PrMx and QPrRn. 
Models for predicting dPHigh and dPlow rarely 

reached an adjusted R2 over 0.3, and PrMx and 
PrMn were the most contributing variables, 
respectively (Table 3). Finally, models for nPos 
and nNeg showed adjusted R2s close to 0.5 (Table 
3). Pre, Ele and MPrRn were the most influential 
variables in all of these models. 

Comparison of modeling techniques

Differences in prediction accuracy among the 
different modeling techniques were not large 
(K-W chi-squared=1.44, df=3, p-value=0.7; Table 
3). However, although differences were not signif-
icant, it must be remarked that the GAMs and 
ANFIS techniques outperformed MLR by more 
than 5 % of the adjusted R2 in 10 and 13 hydrolog-
ical indices, respectively. The greatest improve-
ment in the predictive performance of these two 
techniques with respect to MLR was observed for 
the magnitude indices. ANFIS presented a mean 
increase of 7 % in the adjusted R2 compared to 
MLR in all the magnitude indices, but this only 
resulted in marginal differences (K-W 
chi-squared=2.8487, df=1, p-value=0.09). If only 
the MA and MH indices were considered, the 
differences in performance between MLR and 
ANFIS reached up to more than 10%, and signifi-
cant differences were observed (K-W 
chi-squared=5.13, df=1, p-value=0.02). Differ-
ences between MLR and GAMs that resulted in 
improvements in adjusted R2s beyond 5 % were 
found only for the MA and MH indices (WK-W 
chi-squared=6.72, df=1, p-value=0.01). In addi-
tion, ANFIS and GAMs outperformed MLR in 
one or several of the other index types (T, F and 
RC). On the other hand, RF did not show signifi-
cant enhancements in relation to MLR (K-W 
chi-squared=0.017439, df=1, p-value=0.8949). 

DISCUSSION

Model performance and predictor variables

This study confirms the findings of other works 
that not all the hydrological indices present the 
same potential to be predicted (Carlisle et al., 
2010; Yadav et al., 2007). Among the magnitude 
indices, MA and MH outperformed the ML 
indices. The high predictive performance of the 

leaving out one gauge at a time, developing a new 
model based on the remaining 155 observations 
and finally estimating the hydrological index for 
the left-out gauge. The results from this proce-
dure produced estimates of each hydrological 
metric as if the gauging station were an ungauged 
site. The variation between observed and predict-
ed values represents the uncertainty with which 
the model would be applied to predict index 
values at ungauged sites (Carlisle et al., 2010) 
and allows an assessment of the robustness of 
each method for estimating hydrological indices. 

We employed the root-mean-square-deviance 
(RMSD) and the adjusted R2 to assess the corre-
spondence between observed and estimated 
values as a relative performance of each model, 
following other authors (Carlisle et al., 2010; 
Sanborn & Bledsoe, 2006; Van Sickle et al., 
2006). Hence, models producing the lowest 
RMSD and the highest adjusted R2 were deemed 
superior. In addition, we used Kruscal-Wallis to 
test whether the differences in adjusted R2 found 
between the modeled indices and modeling 
techniques were significant.

homogeneous as possible based on series of 
binary rules. RF introduces random variation to 
CARTs by growing a defined number of trees 
with a bootstrap sample of the training data and a 
random sample of the predictors. The importance 
of the predictor variables is evaluated by random-
ly permuting each predictor variable in turn and 
predicting the response of the bootstrap sample 
observations. The decrease in prediction perfor-
mance is the measure of importance of the origi-
nal variable. Non-transformed response or 
predictor variables were used in the RF models.

Adaptive Neuro-Fuzzy Inference System (ANFIS)

ANFIS combines qualitative aspects of human 
knowledge from Fuzzy Inference Systems (FISs) 
with an effective, advanced machine learning 
method (neural networks) to adjust and tune these 
rules (Jang, 1993). 

A FIS is based on fuzzy decision rules and the 
fuzzy reasoning unit (Jang, 1993). The fuzzy 
decision rules (if-then rules) are rules expressed 
in the form “if X (input variable) is A then Y 
(output variable) is B”, where A (premise) and B 
(consequence) are linguistic values (e.g., high 
and low). Fuzzy logic allows, within these 
decision rules, any judgment state to take values 
between 0 and 1 according to its probability. In 
this regard, Membership Functions (MFs) are the 
functions that relate a variable to the probabilities 
associated with the judgment states.  

Fuzzy reasoning is an inference procedure 
used to derive conclusions from a set of fuzzy 
decision rules. The steps of fuzzy reasoning 
performed by a FIS are (Jang, 1993; Marce et al., 
2004):

1. Compare the input variables with the 
MFs in the premise part of the fuzzy rules to 
obtain the probability of each linguistic label 
(fuzzification).

2. Combine (through logic operators) the 
probability in the premise part to get the weight of 
each rule. 

3. Generate the qualified consequent of 
each rule depending on its weight.

4. Aggregate the qualified consequents to 
produce a crisp output (defuzzification). 

Given an input-output problem, the construc-

tion of a FIS has two fundamental steps: the spec-
ification of an appropriate number and type of 
input and output MFs (structure identification) 
and the specification of the shape of the MFs 
(parameter estimation). The structure identifica-
tion was solved by applying a trial-and-error 
procedure and a conservative criterion (i.e., mini-
mum number of parameters in the best fit). More-
over, since the maximum number of parameters 
to be fitted increases exponentially with the 
number of variables and MFs and the total 
number of parameters should not exceed 1/6 the 
number of cases (Marce et al., 2004), a maximum 
of 3 MFs was established.  Once the model struc-
ture, i.e., number of MFs, was defined, we 
estimated the parameters corresponding to each 
MF through the use of a numerical method called 
the Hybrid Learning Method (Marce et al., 2004). 
Specifically, these parameters were defined using 
adaptive neural networks algorithms. To avoid 
overfitting problems during the estimation of 
these parameters, the data set was randomly split 
into a training set (2/3 of the data set) used to fit 
the values and a trial set (1/3 of the data), which 
was not used by the hybrid learning algorithm. 
The splitting procedure was repeated 200 times 
and each time the parameters were adjusted 
individually. The hydrological indices were 
converted to the range (0 1), while the environ-
mental variables were converted to z-scores (i.e., 
mean=0, standard deviation=1) according to 
ANFIS requirements. Finally, to obtain the 
importance of the predictors in each model, envi-
ronmental variables were removed from the 
model one at a time while holding all other 
predictor variables. Then, for each model we 
calculated the predictive performance through the 
adjusted R2. The larger the decrease of predictive 
performance, the greater the assumed importance 
of that variable. 

Validation and evaluation of model perfor-
mance

A jackknife cross–validation procedure was 
performed with R statistical software to test the 
predictive performance of each modeling 
technique for the 16 hydrological indices. This 
cross-validation procedure was applied by 

Environmental variables (predictors)

Several studies have highlighted the importance 
of climate, topography, land cover and geology 
on the hydrological regime regardless of 
geographic location (Kennard et al., 2010; Lane 
et al., 2017; Sanborn & Bledsoe, 2006). Thus, 
environmental variables were used to explain the 
hydrological character of the recorded flow series 
and predict this character in the entire river 
network. A synthetic river network (SRN) was 
delineated using a 25-m digital elevation model 
(DEM) with the NestStream program (Benda et 
al., 2007). The SRN comprised 667 406 segments 
with lengths ranging from 16 to 800 m and was 
used as a spatial network to integrate the hydro-
logical and environmental information. Predictor 
variables were extracted from existing databases 
provided by several national and regional institu-
tions. The predictor variables for each segment 
represented the mean value of the variables in the 
upstream catchment. A set of 19 variables was 
selected (Table 2); detailed information regarding 
the units, scale and sources of information can be 
found in Peñas et al. (2014).

In addition, according to the maximum 
number of degrees of freedom allowed by the 
different techniques, a maximum of 6 predictor 
variables was established for the models. The 
selection of these 6 variables was based on the 
combination of scatter plots (hydrological 
indices versus environmental variables) and 
parametric correlations to identify the environ-
mental variables that were most meaningful for 
the prediction of each dependent variable (Knight 
et al., 2011). In this regard, the Pearson correla-
tion values between the hydrological indices and 
the predictor variables were used as the main 
screening criterion. Hence, for each hydrological 
index, we selected the 6 predictor variables with 
the highest correlation values. 

Modeling Techniques

The predictive performance of 4 distinct 
techniques to model hydrological indices was 
compared in this study. Modeling and statistical 
analysis were performed with R statistical 
software using the stats (v.3.3.2), gam (v.1.14) 

and randomForest (v.4.6 ) packages, except in the 
case of ANFIS models, which were developed 
using functions from the Mathwork´s MATLAB 
Fuzzy Logic Toolbox (FLT) included in a 
MATLAB code programmed by Marcé et al. 
(2004) and adapted by the authors to carry out the 
specific analyses performed in this study. The 
following section briefly describes each of the 
five modeling techniques.

Multiple Linear Regression (MLR)

MLR assumes a linear relationship between the 
predictor and the response variables through the 
estimation of parameters for each predictor. 
Specific transformations (Tables 1 and 2) were 
applied to meet the assumptions (normality, inde-
pendence and homoscedasticity) for applying 
MLR. If data did not meet the assumptions 
through any transformation, that which was 
closest to meeting these requirements was used. 
The relative importance of each variable was 
established based on the comparison of the 
regression test statistic T value. 

Generalized Additive Models (GAMs)

GAMs are semi-parametric models (Hastie & 
Tibshirani, 1986) that relate the predictor and 
dependent variable through a link function and 
estimate a non-parametric function for each 
predictor in order to adapt it to the local behavior 
of the regression function in several regions (Ven-
ables & Dichmont, 2004). The identity link func-
tion of the Gaussian family was applied to the 
transformed variables using the same transforma-
tions as in MLR, given that they were assumed to 
be normally distributed. Thin plate regression 
splines were used with a maximum of 3 degrees of 
freedom. Parallel to MLR, the relative importance 
of each variable was established based in the com-
parison of the regression test statistic T value. 

Random Forest (RF)

RF (Breiman, 2001) comprises an ensemble of 
individual Classification and Regression Trees 
(CARTs). CARTs split the dimensional space 
defined by the predictors into groups that are as 

unaffected by impoundments or significant 
abstraction upstream were selected for analysis. 
In addition, we selected gauges with data avail-
able for the 1976-2010 period and analyzed the 
quality of the series (Peñas et al., 2014). Finally, 
156 gauges were selected, which accounted for an 
average length of 17 years of data (Fig. 1).

It was beyond the scope of this study to 

predict and evaluate all the hydrological indices 
currently in use (see Olden & Poff, 2003); there-
fore, we selected one or several indices represent-
ing each of the five ecologically relevant aspects 
of the flow regime, i.e., magnitude, timing, 
frequency, duration and rate of change (Olden & 
Poff, 2003; Table 1).

tion fittings has been pointed out (Sanborn & 
Bledsoe, 2006). There are many examples of the 
use of other modeling and machine learning 
techniques to model many environmental issues 
(e.g., Alvarez-Cabria et al., 2016; Elith et al., 
2006; Manel et al., 1999, Marcé et al., 2004). In 
contrast, their application in the prediction of 
hydrological indices has been limited, although 
they could provide important benefits in this field 
(Alcázar et al., 2008; Heuvelmans et al., 2006; 
Snelder et al., 2009).

In this study we concentrated on developing 
statistical models for 16 hydrological indices 
covering the 5 ecologically relevant hydrologic 
attributes (i.e., magnitude, timing, frequency, 
duration and rate of change; Poff et al., 1997). We 
used one traditional technique (Multiple Linear 
Regression (MLR) and three more complex 
techniques that apply contrasting rationale to 
model the distribution of the response variable: 
Generalized Additive Models (GAMs), Random 
Forest (RF) and Adaptive Neuro-Fuzzy Inference 
System (ANFIS). Therefore, the objectives of this 
study were to 1) explore the ability of models to 
predict different types of hydrological indices and 
2) compare the performance of 5 modeling 
techniques to predict 16 hydrological indices at 
ungauged sites. 

METHODS

Study Area

The study area comprises the catchments of the 
northern third of the Iberian Peninsula (Fig. 1), 
covering a total area greater than 124 000 km2. It 
includes a heterogeneous set of environmental 
conditions. 

The area draining into the Cantabrian Sea 
encompasses several catchments with drainage 
areas ranging from 30 to 4907 km2, covering a 
total area of 22 000 km2. The rivers are confined 
by the Cantabrian Cordillera, which reaches up to 
2600 m a.s.l. and runs parallel to the coast. Thus, 
they are characterized by high slopes and short 
main stream lengths. The climate varies from 
thermo-temperate Atlantic on the coast to oro- 
and supra-temperate in the inner regions 
(Rivas-Martínez et al., 2004). Precipitation is 

abundant throughout the year with a mean of 
1300 mm/year, with maximum rainfall in Decem-
ber (150 mm/month) and minimum in July (50 
mm/month). Snowfall is frequent in winter above 
1000 m a.s.l. More than 50 % of the surface is 
covered by deciduous forest, scrubs and grass-
lands, while 10 % is occupied by agriculture. 

Meanwhile, the Mediterranean area is mainly 
covered by the Ebro catchment, along with a set 
of medium-sized basins in the east coast. The 
Ebro catchment covers a total area of 85 530 km2. 
It is enclosed by the Cantabrian Mountains and 
the Pyrenees (3400 m a.s.l.) in the north, the Cata-
lan Coastal Chain (1712 m a.s.l.) in the east, and 
from the north-west to the south-east by the 
Iberian massif (2300 m a.s.l.), which creates a 
dense river network in the catchment boundaries 
and an extended flat surface in the interior. This 
area is characterized by a meso-Mediterranean 
and supra-Mediterranean climate (Rivas-Martínez 
et al., 2004), with a mean annual precipitation of 
650 mm, varying from 300 mm in the central area 
of the main fluvial axis to 1700 mm in the Pyre-
nees Mountains, where snow is abundant in 
winter and early spring (Bejarano et al., 2010). 
The precipitation regime in the Mediterranean 
region has its maxima in autumn and spring and 
minima in winter and summer. Agricultural land 
accounts for 50 % of this territory. 

The Catalan catchments comprises several 
catchments ranging from 72 to 5000 km2, cover-
ing a total area of 16 500 km2 that drains directly 
from the Pyrenees or the Catalan Coastal Chain 
to the sea. This area is dominated by the Mediter-
ranean oceanic climate on the coast and a temper-
ate climate in the mountains. Precipitation 
declines from an annual mean of 1200 mm/year at 
the northern river heads to less than 500 mm/year 
in the southern catchments. Coniferous and 
broadleaf forest, scrubs and grasslands occupy 
more than 60 % of the surface in the northern 
catchments, which are progressively replaced by 
agricultural land in the south.

Hydrologic Data and Hydrological Indices

Several Spanish water agencies and regional 
governments provided series of daily mean flow 
measured at 428 gauging stations. Only gauges 

INTRODUCTION

River flow regime is a key element that structures 
freshwater ecosystems (Poff et al., 1997). Indeed, 
the understanding of the bio-physical associations 
between hydrological variability and stream 
biological communities is a critical scientific and 
management challenge (Alvarez-Cabria et al., 
2017). However, it is frequently the case that 
streamflow data are not available at a site of inter-
est such as where biomonitoring is carried out 
(Poff & Zimmerman, 2010; Sanborn & Bledsoe, 
2006). This hinders the exploration of the flow 
regime influence on stream ecology and ultimate-
ly the management of these systems. 

Natural flow regime can be described through 
a collection of ecologically relevant hydrological 
indices (Olden & Poff, 2003). Hence, interest in 

the prediction of these hydrological indices in 
ungauged streams has grown rapidly in recent 
years (Carlisle et al., 2010; Kennen et al., 2008). 
Most of the work has been aimed at addressing 
water yield and flooding issues. Thus, models to 
predict average flows, flood quantiles, flow dura-
tion curves or low-flow parameters dominate the 
literature (Sanborn & Bledsoe, 2006). In contrast, 
prediction of ecologically relevant hydrological 
indices has received limited attention (Carlisle et 
al., 2010; Knight et al., 2011; Sanborn & Bled-
soe, 2006). 

Multiple linear regression has been the most 
commonly used statistical technique to predict 
hydrological indices in ungauged sites (Knight et 
al., 2011). However, the potential improvement 
in model performance when using other modeling 
procedures that do not assume specific distribu-
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understanding of this technique over other 
machine learning approaches.

CONCLUSION

The application of four modeling techniques to 
predict 16 environmentally meaningful hydrologi-
cal indices evidenced that all techniques might be 
suitable, since they showed similar prediction 
ability. Nonetheless, the accuracy of complex 
modeling techniques equal to that of more classi-
cal methods may be associated with the low 
number of unaltered gauges used to fit the models. 
Expanding this comparison to larger areas with a 
higher number of unaltered gauges will allow the 
actual potential of the most sophisticated methods 
to be analyzed. ANFIS represented a slight 
improvement over MLR, although the computa-
tional cost and level of knowledge required to 
apply the method and interpret the results may 
limit its application. It is widely accepted that 
machine learning techniques are capable of 
dealing with linear and non-linear relationships. 
Hence, we believe that machine learning 
techniques must be considered when they do not 
entail a significant increase in the required 
resources and the links between hydrological 
indices and predictors can be clearly understood. 

On the other hand, not all hydrological indices 
were predicted with the same accuracy, resulting 
in critical implications and limitations depending 
on the further uses of these predictions. Magni-
tude and frequency indices were generally 
predicted with excellent accuracy, which opens a 
promising window to address several freshwater 
management and ecological issues. In contrast, 
none of the employed techniques allowed precise 
models for timing, duration and rate-of-change 
indices to be developed. Therefore, a major effort 
should be made to improve environmental 
databases in order to provide this climatic, 
geological, edaphological and groundwater infor-
mation on the spatio-temporal scales on which 
flow regime patterns are influenced.
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variety of ecological and earth science variables 
have also highlighted that alternative complex 
techniques did not exhibit great differences in 
their prediction accuracy relative to traditional 
modeling approaches (Manel et al., 1999; Mar-
mion et al., 2008). In contrast, other authors have 
found that complex modeling techniques outper-
formed linear approaches for predicting hydrolog-
ical attributes (Booker & Snelder, 2012; Tisseuil 
et al., 2010), fluvial nutrient load (Marce et al., 
2004) or species distribution (Elith et al., 2006). 
Most of these authors emphasized the high flexi-
bility of non-linear techniques in capturing com-
plex relationships between predictor and response 
variables (Elith et al., 2006). However, when the 
underlying data structure and assumptions are met 
for a particular modeling method (e.g., linearity 
for MLR), the application of complex techniques 
does not necessarily produce significant improve-
ments in model performance (Olden & Jackson, 
2002a). This is the case for the hydrological 
indices of magnitude. However, GAMs, RF and 
ANFIS usually outperformed MLR in indices in 
which linearity was rarely achieved, e.g., pred, 
FRE3, dPhigh, nPos and nNeg (Table 3). It must 
be also stressed that GAMs and ANFIS outper-
formed MLR (>5 %) in five and seven out of eight 
magnitude indices, respectively. GAMs allow for 
both linear and non-linear additive response 
shapes (Hastie & Tibshirani, 1986; Wood & 
Augustin, 2002). Hence, despite the linearity of 
several relationships, GAMs were able to tune the 
response more finely in specific sections where 
relationships were not linear. 

The small gains in predictive performance of 
complex modeling, i.e., machine learning, 
techniques can be attributed to the low number of 
training sites (Kampichler et al., 2010). Since 
machine learning techniques are viewed as 
data-intensive methods and the spatial availability 
of hydrological data sets is typically small, their 
application is limited. In this sense, studies in 
which complex modeling methods outperformed 
linear approaches have presented a number of 
sites on a scale of thousands (e.g., Prasad et al., 
2006), which contrasts with the 156 sites used in 
this work. Therefore, the application of these 
kinds of methods is promising where spatial 
coverage of hydrological data is substantial.  

Beyond the predictive performance of the 
models, other characteristics such as the statistical 
skills needed to develop them and interpret the 
results must be taken into account when selecting 
the optimal modeling technique. For instance, 
ANFIS required the definition of the number and 
shape of MF, and it is recommended (Marcé et al., 
2004) that these processes be carried out through 
an independent cross-validation process, as 
achieved in this work. On the other hand, the 
application of MLR involves complying with the 
assumptions of normality, homoscedasticity, inde-
pendence and linearity, which was accomplished 
through different transformations (Tables 1 and 
2). Given the disparity in the nature of hydrologi-
cal indices and environmental data, no single 
transformation could be applied systematically 
and, as shown here, transformation does not 
always assure compliance with assumptions. In 
contrast, RF was the only fully automated tech-
nique, in which the distribution of the variables 
does not have to comply with any assumption 
(Breiman, 2001), which reduces the time needed 
and facilitates its application by users who are not 
specialists in statistics. Lastly, the ability of each 
technique to identify the actual relationships 
between the hydrological indices and the environ-
mental variables must be taken into account. The 
four techniques agreed in the identification of the 
most important predictors for most of the models. 
However, MLR and GAMs allow straightforward 
relationships between predictors and response 
variables to be set (Manel et al., 1999). In contrast, 
machine learning methods have been largely seen 
as “black boxes.” For instance, the development 
of ANFIS models and the understanding of results 
require substantial time and knowledge, although 
enormous progress has been made in understand-
ing the relationships underlying this technique 
(Marce et al., 2004; Olden & Jackson, 2002b). On 
the other hand, RF results form an ensemble of 
regression trees and may also become a black box 
when interpreting the results (Prasad et al., 2006). 
Nonetheless, the ‘randomForest’ package of R 
statistical software incorporates specific functions 
to numerically and graphically visualize the 
marginal effect of each predictor variable on the 
response (e.g., Alvarez-Cabria et al., 2016). These 
features definitively facilitate the application and 

MA and MH indices is related to their dependence 
on precipitation events and direct catchment 
runoff (Tisseuil et al., 2010). Precipitation 
variables were derived from 1000x1000-m precip-
itation grids and it was demonstrated that they 
were precise enough to produce reliable models. In 
this regard, there are several previous studies that 
have found strong relationships between hydrolog-
ical variables and climatic predictor attributes 
(Carlise et al., 2010: Reidy-Liermann et al., 2011; 
Sanborn & Bledsoe, 2006). For instance, 
Reidy-Lierman et al. (2011) found that spring 
precipitation was the most important variable for 
discriminating rivers dominated by rain, snowmelt 
or mixed rivers. This agreed with our findings that 
Pre4 was among the most important variables for 
predicting flow magnitude, as all these river types 
can be found in this study area (Bejarano et al., 
2010). Moreover, Solans & Poff (2015) and Beja-
rano et al. (2010) found that the segregation of 
river types in the Ebro Basin is largely explained 
by the variability of climatic predictors such as 
temperature, evapotranspiration and precipitation. 
In this regard, the high gradient of EvMx and 
PreSu values that prevails from the oceanic west-
ern part to the eastern Mediterranean sector plays 
a significant role in the discrimination of flow 
magnitudes across the study area.

On the other hand, the errors of ML index 
models have been relatively high. In most 
instances, significant correlations between ML 
indices and soil and geology characteristics have 
been observed in previous works (Clausen & 
Pearson, 1995; Kroll et al., 2004, Lane et al., 
2017). The inclusion of these variables allowed 
prediction performances comparable to those 
showed by MA and MH indices to be obtained 
(Knight et al., 2011; Sanborn & Bledsoe, 2006). 
It is likely that the small contribution of these 
variables in the present study was due to the low 
precision of the geology and soil data rather than 
the lack of causal links. The most detailed soil 
and geology maps in the study area have a 1:200 
000 scale, which contrasts with the accuracy of 
the topography (25x25-m DEM), climatic 
(1000x1000-m grid) and land-use (1:25 000) data 
sources. Thus, we believe that improving soil and 
subsurface geology information should lead to 
improvements in modeling ML indices. 

Regressions carried out elsewhere (Knight et 
al., 2011; Sanborn & Bledsoe, 2006) have encoun-
tered difficulties in accurately predicting frequen-
cy indices, while we were able to predict FRE3 
with a reasonable accuracy. The most important 
predictor variables for FRE3 were ele and pre, 
which agreed with results highlighted in previous 
studies (Carlisle et al., 2010; Knight et al., 2011; 
Ourada et al., 2001). This result is not surprising, 
as the combination of peak flows of nonsynchro-
nous tributaries in the travel of flows downstream, 
i.e. to river segments showing lower elev, has been 
observed to attenuate and dampen flow peaks, 
reducing the number of times a flow overcomes a 
threshold (Naiman et al., 1998; Poff et al., 1997).

However, it must be also pointed out that 
FRE3 takes into account moderate-high flow 
events that usually last several days. The duration 
of these events contrasts with the time scale of the 
commonly available climate database. For 
instance, in our study area only mean monthly 
precipitation series were available, which presum-
ably lacked the proper time scale to characterize 
these events. Hence, the availability of daily 
precipitation data and its inclusion in models simi-
lar to those used in this study could be assumed to 
be highly beneficial for predicting these indices. 

In addition, the lack of proper predictor 
variables has probably been the critical element 
hindering the development of more accurate 
models for the duration, rate-of-change and 
timing indices. For these three groups of hydro-
logical indices, predictor variables derived from 
precipitation series (PreMx, PreMn and MPrRn) 
were the most contributing variables. Given these 
results, it could be speculated that that the wettest 
areas presented longer high-flow and shorter 
low-flow events, along with a higher rate of flow 
rise and fall, than zones where precipitation is 
scarce. However, even if these relationships may 
seem obvious and expected, they cannot be 
assured with certainty due to the low accuracy of 
the obtained models.  

Comparison of modeling techniques

Our analysis demonstrated that there was not an 
optimal technique to predict all hydrological 
indices. Several works focused on modeling a 

RESULTS

Model performance and predictor variables

The results exhibited a wide range of predictive 
performance, with adjusted R2s ranging from 
0.16 (MLR-Pred) to 0.88 (ANFIS-M4 and 
ANFIS-30HF; Table 3). However, all the models 
presented a level of significance p-value<0.01 
when tested against the F statistic hypothesis. 
Model performance was higher when predicting 
the flow magnitude (MA, MH and ML) and 
frequency indices (FH: FRE7) than when predict-
ing the timing (T: JMax; JMin and Pred), dura-
tion (DH: dPHigh and DL: dPLow) and 
rate-of-change (RC: nPos and nNeg) indices 
(K-W chi-squared=57.9, df=7, p-value<0.001; 
Table 3). In addition, for each hydrological index, 
the predictor variables kept the order of impor-
tance regardless of the modeling technique used. 
In this regard, it must be highlighted that, accord-
ing to the Person correlation values, neither of the 
geology variables, Perm and Hard, were selected 
within the set of 6 initial predictor variables. The 
MA (except for M9) and MH indices were 
predicted with excellent accuracy, showing 
adjusted R2s that commonly exceeded 0.8. In 
contrast, models of 30LF and X95 registered 
lower adjusted R2s, which ranged from 15 to 25 
% below those of the MA and MH indices. Are, 
annual (Pre), summer (PreSu) and April precipi-
tation (Pre4) were the most important variables in 
practically all the flow magnitude models, espe-
cially those developed for MA and MH. On the 
other hand, when predicting the M9 and ML 
indices, other environmental variables such as 
gra, EvMx and QPrRn presented high contribu-
tion rates to the models. The timing index models 
presented the lowest predictive performances 
(Table 3). In general, adjusted R2s for the JMax 
and JMin indices were not greater than 0.2, while 
the best model for Pred reached 0.4 (Table 3). Pre 
and MPrRn were selected in all models for Jmax. 
MPrRn, Eva and Ele were commonly included in 
the models for JMin. Pred was related mainly to 
PreMx and Gra. FRE3 was predicted with a max-
imum adjusted R2 of 0.71 (Table 3), and the most 
influential variables were Ele, PrMx and QPrRn. 
Models for predicting dPHigh and dPlow rarely 

reached an adjusted R2 over 0.3, and PrMx and 
PrMn were the most contributing variables, 
respectively (Table 3). Finally, models for nPos 
and nNeg showed adjusted R2s close to 0.5 (Table 
3). Pre, Ele and MPrRn were the most influential 
variables in all of these models. 

Comparison of modeling techniques

Differences in prediction accuracy among the 
different modeling techniques were not large 
(K-W chi-squared=1.44, df=3, p-value=0.7; Table 
3). However, although differences were not signif-
icant, it must be remarked that the GAMs and 
ANFIS techniques outperformed MLR by more 
than 5 % of the adjusted R2 in 10 and 13 hydrolog-
ical indices, respectively. The greatest improve-
ment in the predictive performance of these two 
techniques with respect to MLR was observed for 
the magnitude indices. ANFIS presented a mean 
increase of 7 % in the adjusted R2 compared to 
MLR in all the magnitude indices, but this only 
resulted in marginal differences (K-W 
chi-squared=2.8487, df=1, p-value=0.09). If only 
the MA and MH indices were considered, the 
differences in performance between MLR and 
ANFIS reached up to more than 10%, and signifi-
cant differences were observed (K-W 
chi-squared=5.13, df=1, p-value=0.02). Differ-
ences between MLR and GAMs that resulted in 
improvements in adjusted R2s beyond 5 % were 
found only for the MA and MH indices (WK-W 
chi-squared=6.72, df=1, p-value=0.01). In addi-
tion, ANFIS and GAMs outperformed MLR in 
one or several of the other index types (T, F and 
RC). On the other hand, RF did not show signifi-
cant enhancements in relation to MLR (K-W 
chi-squared=0.017439, df=1, p-value=0.8949). 

DISCUSSION

Model performance and predictor variables

This study confirms the findings of other works 
that not all the hydrological indices present the 
same potential to be predicted (Carlisle et al., 
2010; Yadav et al., 2007). Among the magnitude 
indices, MA and MH outperformed the ML 
indices. The high predictive performance of the 

leaving out one gauge at a time, developing a new 
model based on the remaining 155 observations 
and finally estimating the hydrological index for 
the left-out gauge. The results from this proce-
dure produced estimates of each hydrological 
metric as if the gauging station were an ungauged 
site. The variation between observed and predict-
ed values represents the uncertainty with which 
the model would be applied to predict index 
values at ungauged sites (Carlisle et al., 2010) 
and allows an assessment of the robustness of 
each method for estimating hydrological indices. 

We employed the root-mean-square-deviance 
(RMSD) and the adjusted R2 to assess the corre-
spondence between observed and estimated 
values as a relative performance of each model, 
following other authors (Carlisle et al., 2010; 
Sanborn & Bledsoe, 2006; Van Sickle et al., 
2006). Hence, models producing the lowest 
RMSD and the highest adjusted R2 were deemed 
superior. In addition, we used Kruscal-Wallis to 
test whether the differences in adjusted R2 found 
between the modeled indices and modeling 
techniques were significant.

homogeneous as possible based on series of 
binary rules. RF introduces random variation to 
CARTs by growing a defined number of trees 
with a bootstrap sample of the training data and a 
random sample of the predictors. The importance 
of the predictor variables is evaluated by random-
ly permuting each predictor variable in turn and 
predicting the response of the bootstrap sample 
observations. The decrease in prediction perfor-
mance is the measure of importance of the origi-
nal variable. Non-transformed response or 
predictor variables were used in the RF models.

Adaptive Neuro-Fuzzy Inference System (ANFIS)

ANFIS combines qualitative aspects of human 
knowledge from Fuzzy Inference Systems (FISs) 
with an effective, advanced machine learning 
method (neural networks) to adjust and tune these 
rules (Jang, 1993). 

A FIS is based on fuzzy decision rules and the 
fuzzy reasoning unit (Jang, 1993). The fuzzy 
decision rules (if-then rules) are rules expressed 
in the form “if X (input variable) is A then Y 
(output variable) is B”, where A (premise) and B 
(consequence) are linguistic values (e.g., high 
and low). Fuzzy logic allows, within these 
decision rules, any judgment state to take values 
between 0 and 1 according to its probability. In 
this regard, Membership Functions (MFs) are the 
functions that relate a variable to the probabilities 
associated with the judgment states.  

Fuzzy reasoning is an inference procedure 
used to derive conclusions from a set of fuzzy 
decision rules. The steps of fuzzy reasoning 
performed by a FIS are (Jang, 1993; Marce et al., 
2004):

1. Compare the input variables with the 
MFs in the premise part of the fuzzy rules to 
obtain the probability of each linguistic label 
(fuzzification).

2. Combine (through logic operators) the 
probability in the premise part to get the weight of 
each rule. 

3. Generate the qualified consequent of 
each rule depending on its weight.

4. Aggregate the qualified consequents to 
produce a crisp output (defuzzification). 

Given an input-output problem, the construc-

tion of a FIS has two fundamental steps: the spec-
ification of an appropriate number and type of 
input and output MFs (structure identification) 
and the specification of the shape of the MFs 
(parameter estimation). The structure identifica-
tion was solved by applying a trial-and-error 
procedure and a conservative criterion (i.e., mini-
mum number of parameters in the best fit). More-
over, since the maximum number of parameters 
to be fitted increases exponentially with the 
number of variables and MFs and the total 
number of parameters should not exceed 1/6 the 
number of cases (Marce et al., 2004), a maximum 
of 3 MFs was established.  Once the model struc-
ture, i.e., number of MFs, was defined, we 
estimated the parameters corresponding to each 
MF through the use of a numerical method called 
the Hybrid Learning Method (Marce et al., 2004). 
Specifically, these parameters were defined using 
adaptive neural networks algorithms. To avoid 
overfitting problems during the estimation of 
these parameters, the data set was randomly split 
into a training set (2/3 of the data set) used to fit 
the values and a trial set (1/3 of the data), which 
was not used by the hybrid learning algorithm. 
The splitting procedure was repeated 200 times 
and each time the parameters were adjusted 
individually. The hydrological indices were 
converted to the range (0 1), while the environ-
mental variables were converted to z-scores (i.e., 
mean=0, standard deviation=1) according to 
ANFIS requirements. Finally, to obtain the 
importance of the predictors in each model, envi-
ronmental variables were removed from the 
model one at a time while holding all other 
predictor variables. Then, for each model we 
calculated the predictive performance through the 
adjusted R2. The larger the decrease of predictive 
performance, the greater the assumed importance 
of that variable. 

Validation and evaluation of model perfor-
mance

A jackknife cross–validation procedure was 
performed with R statistical software to test the 
predictive performance of each modeling 
technique for the 16 hydrological indices. This 
cross-validation procedure was applied by 

Environmental variables (predictors)

Several studies have highlighted the importance 
of climate, topography, land cover and geology 
on the hydrological regime regardless of 
geographic location (Kennard et al., 2010; Lane 
et al., 2017; Sanborn & Bledsoe, 2006). Thus, 
environmental variables were used to explain the 
hydrological character of the recorded flow series 
and predict this character in the entire river 
network. A synthetic river network (SRN) was 
delineated using a 25-m digital elevation model 
(DEM) with the NestStream program (Benda et 
al., 2007). The SRN comprised 667 406 segments 
with lengths ranging from 16 to 800 m and was 
used as a spatial network to integrate the hydro-
logical and environmental information. Predictor 
variables were extracted from existing databases 
provided by several national and regional institu-
tions. The predictor variables for each segment 
represented the mean value of the variables in the 
upstream catchment. A set of 19 variables was 
selected (Table 2); detailed information regarding 
the units, scale and sources of information can be 
found in Peñas et al. (2014).

In addition, according to the maximum 
number of degrees of freedom allowed by the 
different techniques, a maximum of 6 predictor 
variables was established for the models. The 
selection of these 6 variables was based on the 
combination of scatter plots (hydrological 
indices versus environmental variables) and 
parametric correlations to identify the environ-
mental variables that were most meaningful for 
the prediction of each dependent variable (Knight 
et al., 2011). In this regard, the Pearson correla-
tion values between the hydrological indices and 
the predictor variables were used as the main 
screening criterion. Hence, for each hydrological 
index, we selected the 6 predictor variables with 
the highest correlation values. 

Modeling Techniques

The predictive performance of 4 distinct 
techniques to model hydrological indices was 
compared in this study. Modeling and statistical 
analysis were performed with R statistical 
software using the stats (v.3.3.2), gam (v.1.14) 

and randomForest (v.4.6 ) packages, except in the 
case of ANFIS models, which were developed 
using functions from the Mathwork´s MATLAB 
Fuzzy Logic Toolbox (FLT) included in a 
MATLAB code programmed by Marcé et al. 
(2004) and adapted by the authors to carry out the 
specific analyses performed in this study. The 
following section briefly describes each of the 
five modeling techniques.

Multiple Linear Regression (MLR)

MLR assumes a linear relationship between the 
predictor and the response variables through the 
estimation of parameters for each predictor. 
Specific transformations (Tables 1 and 2) were 
applied to meet the assumptions (normality, inde-
pendence and homoscedasticity) for applying 
MLR. If data did not meet the assumptions 
through any transformation, that which was 
closest to meeting these requirements was used. 
The relative importance of each variable was 
established based on the comparison of the 
regression test statistic T value. 

Generalized Additive Models (GAMs)

GAMs are semi-parametric models (Hastie & 
Tibshirani, 1986) that relate the predictor and 
dependent variable through a link function and 
estimate a non-parametric function for each 
predictor in order to adapt it to the local behavior 
of the regression function in several regions (Ven-
ables & Dichmont, 2004). The identity link func-
tion of the Gaussian family was applied to the 
transformed variables using the same transforma-
tions as in MLR, given that they were assumed to 
be normally distributed. Thin plate regression 
splines were used with a maximum of 3 degrees of 
freedom. Parallel to MLR, the relative importance 
of each variable was established based in the com-
parison of the regression test statistic T value. 

Random Forest (RF)

RF (Breiman, 2001) comprises an ensemble of 
individual Classification and Regression Trees 
(CARTs). CARTs split the dimensional space 
defined by the predictors into groups that are as 

unaffected by impoundments or significant 
abstraction upstream were selected for analysis. 
In addition, we selected gauges with data avail-
able for the 1976-2010 period and analyzed the 
quality of the series (Peñas et al., 2014). Finally, 
156 gauges were selected, which accounted for an 
average length of 17 years of data (Fig. 1).

It was beyond the scope of this study to 

predict and evaluate all the hydrological indices 
currently in use (see Olden & Poff, 2003); there-
fore, we selected one or several indices represent-
ing each of the five ecologically relevant aspects 
of the flow regime, i.e., magnitude, timing, 
frequency, duration and rate of change (Olden & 
Poff, 2003; Table 1).

tion fittings has been pointed out (Sanborn & 
Bledsoe, 2006). There are many examples of the 
use of other modeling and machine learning 
techniques to model many environmental issues 
(e.g., Alvarez-Cabria et al., 2016; Elith et al., 
2006; Manel et al., 1999, Marcé et al., 2004). In 
contrast, their application in the prediction of 
hydrological indices has been limited, although 
they could provide important benefits in this field 
(Alcázar et al., 2008; Heuvelmans et al., 2006; 
Snelder et al., 2009).

In this study we concentrated on developing 
statistical models for 16 hydrological indices 
covering the 5 ecologically relevant hydrologic 
attributes (i.e., magnitude, timing, frequency, 
duration and rate of change; Poff et al., 1997). We 
used one traditional technique (Multiple Linear 
Regression (MLR) and three more complex 
techniques that apply contrasting rationale to 
model the distribution of the response variable: 
Generalized Additive Models (GAMs), Random 
Forest (RF) and Adaptive Neuro-Fuzzy Inference 
System (ANFIS). Therefore, the objectives of this 
study were to 1) explore the ability of models to 
predict different types of hydrological indices and 
2) compare the performance of 5 modeling 
techniques to predict 16 hydrological indices at 
ungauged sites. 

METHODS

Study Area

The study area comprises the catchments of the 
northern third of the Iberian Peninsula (Fig. 1), 
covering a total area greater than 124 000 km2. It 
includes a heterogeneous set of environmental 
conditions. 

The area draining into the Cantabrian Sea 
encompasses several catchments with drainage 
areas ranging from 30 to 4907 km2, covering a 
total area of 22 000 km2. The rivers are confined 
by the Cantabrian Cordillera, which reaches up to 
2600 m a.s.l. and runs parallel to the coast. Thus, 
they are characterized by high slopes and short 
main stream lengths. The climate varies from 
thermo-temperate Atlantic on the coast to oro- 
and supra-temperate in the inner regions 
(Rivas-Martínez et al., 2004). Precipitation is 

abundant throughout the year with a mean of 
1300 mm/year, with maximum rainfall in Decem-
ber (150 mm/month) and minimum in July (50 
mm/month). Snowfall is frequent in winter above 
1000 m a.s.l. More than 50 % of the surface is 
covered by deciduous forest, scrubs and grass-
lands, while 10 % is occupied by agriculture. 

Meanwhile, the Mediterranean area is mainly 
covered by the Ebro catchment, along with a set 
of medium-sized basins in the east coast. The 
Ebro catchment covers a total area of 85 530 km2. 
It is enclosed by the Cantabrian Mountains and 
the Pyrenees (3400 m a.s.l.) in the north, the Cata-
lan Coastal Chain (1712 m a.s.l.) in the east, and 
from the north-west to the south-east by the 
Iberian massif (2300 m a.s.l.), which creates a 
dense river network in the catchment boundaries 
and an extended flat surface in the interior. This 
area is characterized by a meso-Mediterranean 
and supra-Mediterranean climate (Rivas-Martínez 
et al., 2004), with a mean annual precipitation of 
650 mm, varying from 300 mm in the central area 
of the main fluvial axis to 1700 mm in the Pyre-
nees Mountains, where snow is abundant in 
winter and early spring (Bejarano et al., 2010). 
The precipitation regime in the Mediterranean 
region has its maxima in autumn and spring and 
minima in winter and summer. Agricultural land 
accounts for 50 % of this territory. 

The Catalan catchments comprises several 
catchments ranging from 72 to 5000 km2, cover-
ing a total area of 16 500 km2 that drains directly 
from the Pyrenees or the Catalan Coastal Chain 
to the sea. This area is dominated by the Mediter-
ranean oceanic climate on the coast and a temper-
ate climate in the mountains. Precipitation 
declines from an annual mean of 1200 mm/year at 
the northern river heads to less than 500 mm/year 
in the southern catchments. Coniferous and 
broadleaf forest, scrubs and grasslands occupy 
more than 60 % of the surface in the northern 
catchments, which are progressively replaced by 
agricultural land in the south.

Hydrologic Data and Hydrological Indices

Several Spanish water agencies and regional 
governments provided series of daily mean flow 
measured at 428 gauging stations. Only gauges 

INTRODUCTION

River flow regime is a key element that structures 
freshwater ecosystems (Poff et al., 1997). Indeed, 
the understanding of the bio-physical associations 
between hydrological variability and stream 
biological communities is a critical scientific and 
management challenge (Alvarez-Cabria et al., 
2017). However, it is frequently the case that 
streamflow data are not available at a site of inter-
est such as where biomonitoring is carried out 
(Poff & Zimmerman, 2010; Sanborn & Bledsoe, 
2006). This hinders the exploration of the flow 
regime influence on stream ecology and ultimate-
ly the management of these systems. 

Natural flow regime can be described through 
a collection of ecologically relevant hydrological 
indices (Olden & Poff, 2003). Hence, interest in 

the prediction of these hydrological indices in 
ungauged streams has grown rapidly in recent 
years (Carlisle et al., 2010; Kennen et al., 2008). 
Most of the work has been aimed at addressing 
water yield and flooding issues. Thus, models to 
predict average flows, flood quantiles, flow dura-
tion curves or low-flow parameters dominate the 
literature (Sanborn & Bledsoe, 2006). In contrast, 
prediction of ecologically relevant hydrological 
indices has received limited attention (Carlisle et 
al., 2010; Knight et al., 2011; Sanborn & Bled-
soe, 2006). 

Multiple linear regression has been the most 
commonly used statistical technique to predict 
hydrological indices in ungauged sites (Knight et 
al., 2011). However, the potential improvement 
in model performance when using other modeling 
procedures that do not assume specific distribu-
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understanding of this technique over other 
machine learning approaches.

CONCLUSION

The application of four modeling techniques to 
predict 16 environmentally meaningful hydrologi-
cal indices evidenced that all techniques might be 
suitable, since they showed similar prediction 
ability. Nonetheless, the accuracy of complex 
modeling techniques equal to that of more classi-
cal methods may be associated with the low 
number of unaltered gauges used to fit the models. 
Expanding this comparison to larger areas with a 
higher number of unaltered gauges will allow the 
actual potential of the most sophisticated methods 
to be analyzed. ANFIS represented a slight 
improvement over MLR, although the computa-
tional cost and level of knowledge required to 
apply the method and interpret the results may 
limit its application. It is widely accepted that 
machine learning techniques are capable of 
dealing with linear and non-linear relationships. 
Hence, we believe that machine learning 
techniques must be considered when they do not 
entail a significant increase in the required 
resources and the links between hydrological 
indices and predictors can be clearly understood. 

On the other hand, not all hydrological indices 
were predicted with the same accuracy, resulting 
in critical implications and limitations depending 
on the further uses of these predictions. Magni-
tude and frequency indices were generally 
predicted with excellent accuracy, which opens a 
promising window to address several freshwater 
management and ecological issues. In contrast, 
none of the employed techniques allowed precise 
models for timing, duration and rate-of-change 
indices to be developed. Therefore, a major effort 
should be made to improve environmental 
databases in order to provide this climatic, 
geological, edaphological and groundwater infor-
mation on the spatio-temporal scales on which 
flow regime patterns are influenced.
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variety of ecological and earth science variables 
have also highlighted that alternative complex 
techniques did not exhibit great differences in 
their prediction accuracy relative to traditional 
modeling approaches (Manel et al., 1999; Mar-
mion et al., 2008). In contrast, other authors have 
found that complex modeling techniques outper-
formed linear approaches for predicting hydrolog-
ical attributes (Booker & Snelder, 2012; Tisseuil 
et al., 2010), fluvial nutrient load (Marce et al., 
2004) or species distribution (Elith et al., 2006). 
Most of these authors emphasized the high flexi-
bility of non-linear techniques in capturing com-
plex relationships between predictor and response 
variables (Elith et al., 2006). However, when the 
underlying data structure and assumptions are met 
for a particular modeling method (e.g., linearity 
for MLR), the application of complex techniques 
does not necessarily produce significant improve-
ments in model performance (Olden & Jackson, 
2002a). This is the case for the hydrological 
indices of magnitude. However, GAMs, RF and 
ANFIS usually outperformed MLR in indices in 
which linearity was rarely achieved, e.g., pred, 
FRE3, dPhigh, nPos and nNeg (Table 3). It must 
be also stressed that GAMs and ANFIS outper-
formed MLR (>5 %) in five and seven out of eight 
magnitude indices, respectively. GAMs allow for 
both linear and non-linear additive response 
shapes (Hastie & Tibshirani, 1986; Wood & 
Augustin, 2002). Hence, despite the linearity of 
several relationships, GAMs were able to tune the 
response more finely in specific sections where 
relationships were not linear. 

The small gains in predictive performance of 
complex modeling, i.e., machine learning, 
techniques can be attributed to the low number of 
training sites (Kampichler et al., 2010). Since 
machine learning techniques are viewed as 
data-intensive methods and the spatial availability 
of hydrological data sets is typically small, their 
application is limited. In this sense, studies in 
which complex modeling methods outperformed 
linear approaches have presented a number of 
sites on a scale of thousands (e.g., Prasad et al., 
2006), which contrasts with the 156 sites used in 
this work. Therefore, the application of these 
kinds of methods is promising where spatial 
coverage of hydrological data is substantial.  

Beyond the predictive performance of the 
models, other characteristics such as the statistical 
skills needed to develop them and interpret the 
results must be taken into account when selecting 
the optimal modeling technique. For instance, 
ANFIS required the definition of the number and 
shape of MF, and it is recommended (Marcé et al., 
2004) that these processes be carried out through 
an independent cross-validation process, as 
achieved in this work. On the other hand, the 
application of MLR involves complying with the 
assumptions of normality, homoscedasticity, inde-
pendence and linearity, which was accomplished 
through different transformations (Tables 1 and 
2). Given the disparity in the nature of hydrologi-
cal indices and environmental data, no single 
transformation could be applied systematically 
and, as shown here, transformation does not 
always assure compliance with assumptions. In 
contrast, RF was the only fully automated tech-
nique, in which the distribution of the variables 
does not have to comply with any assumption 
(Breiman, 2001), which reduces the time needed 
and facilitates its application by users who are not 
specialists in statistics. Lastly, the ability of each 
technique to identify the actual relationships 
between the hydrological indices and the environ-
mental variables must be taken into account. The 
four techniques agreed in the identification of the 
most important predictors for most of the models. 
However, MLR and GAMs allow straightforward 
relationships between predictors and response 
variables to be set (Manel et al., 1999). In contrast, 
machine learning methods have been largely seen 
as “black boxes.” For instance, the development 
of ANFIS models and the understanding of results 
require substantial time and knowledge, although 
enormous progress has been made in understand-
ing the relationships underlying this technique 
(Marce et al., 2004; Olden & Jackson, 2002b). On 
the other hand, RF results form an ensemble of 
regression trees and may also become a black box 
when interpreting the results (Prasad et al., 2006). 
Nonetheless, the ‘randomForest’ package of R 
statistical software incorporates specific functions 
to numerically and graphically visualize the 
marginal effect of each predictor variable on the 
response (e.g., Alvarez-Cabria et al., 2016). These 
features definitively facilitate the application and 

MA and MH indices is related to their dependence 
on precipitation events and direct catchment 
runoff (Tisseuil et al., 2010). Precipitation 
variables were derived from 1000x1000-m precip-
itation grids and it was demonstrated that they 
were precise enough to produce reliable models. In 
this regard, there are several previous studies that 
have found strong relationships between hydrolog-
ical variables and climatic predictor attributes 
(Carlise et al., 2010: Reidy-Liermann et al., 2011; 
Sanborn & Bledsoe, 2006). For instance, 
Reidy-Lierman et al. (2011) found that spring 
precipitation was the most important variable for 
discriminating rivers dominated by rain, snowmelt 
or mixed rivers. This agreed with our findings that 
Pre4 was among the most important variables for 
predicting flow magnitude, as all these river types 
can be found in this study area (Bejarano et al., 
2010). Moreover, Solans & Poff (2015) and Beja-
rano et al. (2010) found that the segregation of 
river types in the Ebro Basin is largely explained 
by the variability of climatic predictors such as 
temperature, evapotranspiration and precipitation. 
In this regard, the high gradient of EvMx and 
PreSu values that prevails from the oceanic west-
ern part to the eastern Mediterranean sector plays 
a significant role in the discrimination of flow 
magnitudes across the study area.

On the other hand, the errors of ML index 
models have been relatively high. In most 
instances, significant correlations between ML 
indices and soil and geology characteristics have 
been observed in previous works (Clausen & 
Pearson, 1995; Kroll et al., 2004, Lane et al., 
2017). The inclusion of these variables allowed 
prediction performances comparable to those 
showed by MA and MH indices to be obtained 
(Knight et al., 2011; Sanborn & Bledsoe, 2006). 
It is likely that the small contribution of these 
variables in the present study was due to the low 
precision of the geology and soil data rather than 
the lack of causal links. The most detailed soil 
and geology maps in the study area have a 1:200 
000 scale, which contrasts with the accuracy of 
the topography (25x25-m DEM), climatic 
(1000x1000-m grid) and land-use (1:25 000) data 
sources. Thus, we believe that improving soil and 
subsurface geology information should lead to 
improvements in modeling ML indices. 

Regressions carried out elsewhere (Knight et 
al., 2011; Sanborn & Bledsoe, 2006) have encoun-
tered difficulties in accurately predicting frequen-
cy indices, while we were able to predict FRE3 
with a reasonable accuracy. The most important 
predictor variables for FRE3 were ele and pre, 
which agreed with results highlighted in previous 
studies (Carlisle et al., 2010; Knight et al., 2011; 
Ourada et al., 2001). This result is not surprising, 
as the combination of peak flows of nonsynchro-
nous tributaries in the travel of flows downstream, 
i.e. to river segments showing lower elev, has been 
observed to attenuate and dampen flow peaks, 
reducing the number of times a flow overcomes a 
threshold (Naiman et al., 1998; Poff et al., 1997).

However, it must be also pointed out that 
FRE3 takes into account moderate-high flow 
events that usually last several days. The duration 
of these events contrasts with the time scale of the 
commonly available climate database. For 
instance, in our study area only mean monthly 
precipitation series were available, which presum-
ably lacked the proper time scale to characterize 
these events. Hence, the availability of daily 
precipitation data and its inclusion in models simi-
lar to those used in this study could be assumed to 
be highly beneficial for predicting these indices. 

In addition, the lack of proper predictor 
variables has probably been the critical element 
hindering the development of more accurate 
models for the duration, rate-of-change and 
timing indices. For these three groups of hydro-
logical indices, predictor variables derived from 
precipitation series (PreMx, PreMn and MPrRn) 
were the most contributing variables. Given these 
results, it could be speculated that that the wettest 
areas presented longer high-flow and shorter 
low-flow events, along with a higher rate of flow 
rise and fall, than zones where precipitation is 
scarce. However, even if these relationships may 
seem obvious and expected, they cannot be 
assured with certainty due to the low accuracy of 
the obtained models.  

Comparison of modeling techniques

Our analysis demonstrated that there was not an 
optimal technique to predict all hydrological 
indices. Several works focused on modeling a 

RESULTS

Model performance and predictor variables

The results exhibited a wide range of predictive 
performance, with adjusted R2s ranging from 
0.16 (MLR-Pred) to 0.88 (ANFIS-M4 and 
ANFIS-30HF; Table 3). However, all the models 
presented a level of significance p-value<0.01 
when tested against the F statistic hypothesis. 
Model performance was higher when predicting 
the flow magnitude (MA, MH and ML) and 
frequency indices (FH: FRE7) than when predict-
ing the timing (T: JMax; JMin and Pred), dura-
tion (DH: dPHigh and DL: dPLow) and 
rate-of-change (RC: nPos and nNeg) indices 
(K-W chi-squared=57.9, df=7, p-value<0.001; 
Table 3). In addition, for each hydrological index, 
the predictor variables kept the order of impor-
tance regardless of the modeling technique used. 
In this regard, it must be highlighted that, accord-
ing to the Person correlation values, neither of the 
geology variables, Perm and Hard, were selected 
within the set of 6 initial predictor variables. The 
MA (except for M9) and MH indices were 
predicted with excellent accuracy, showing 
adjusted R2s that commonly exceeded 0.8. In 
contrast, models of 30LF and X95 registered 
lower adjusted R2s, which ranged from 15 to 25 
% below those of the MA and MH indices. Are, 
annual (Pre), summer (PreSu) and April precipi-
tation (Pre4) were the most important variables in 
practically all the flow magnitude models, espe-
cially those developed for MA and MH. On the 
other hand, when predicting the M9 and ML 
indices, other environmental variables such as 
gra, EvMx and QPrRn presented high contribu-
tion rates to the models. The timing index models 
presented the lowest predictive performances 
(Table 3). In general, adjusted R2s for the JMax 
and JMin indices were not greater than 0.2, while 
the best model for Pred reached 0.4 (Table 3). Pre 
and MPrRn were selected in all models for Jmax. 
MPrRn, Eva and Ele were commonly included in 
the models for JMin. Pred was related mainly to 
PreMx and Gra. FRE3 was predicted with a max-
imum adjusted R2 of 0.71 (Table 3), and the most 
influential variables were Ele, PrMx and QPrRn. 
Models for predicting dPHigh and dPlow rarely 

reached an adjusted R2 over 0.3, and PrMx and 
PrMn were the most contributing variables, 
respectively (Table 3). Finally, models for nPos 
and nNeg showed adjusted R2s close to 0.5 (Table 
3). Pre, Ele and MPrRn were the most influential 
variables in all of these models. 

Comparison of modeling techniques

Differences in prediction accuracy among the 
different modeling techniques were not large 
(K-W chi-squared=1.44, df=3, p-value=0.7; Table 
3). However, although differences were not signif-
icant, it must be remarked that the GAMs and 
ANFIS techniques outperformed MLR by more 
than 5 % of the adjusted R2 in 10 and 13 hydrolog-
ical indices, respectively. The greatest improve-
ment in the predictive performance of these two 
techniques with respect to MLR was observed for 
the magnitude indices. ANFIS presented a mean 
increase of 7 % in the adjusted R2 compared to 
MLR in all the magnitude indices, but this only 
resulted in marginal differences (K-W 
chi-squared=2.8487, df=1, p-value=0.09). If only 
the MA and MH indices were considered, the 
differences in performance between MLR and 
ANFIS reached up to more than 10%, and signifi-
cant differences were observed (K-W 
chi-squared=5.13, df=1, p-value=0.02). Differ-
ences between MLR and GAMs that resulted in 
improvements in adjusted R2s beyond 5 % were 
found only for the MA and MH indices (WK-W 
chi-squared=6.72, df=1, p-value=0.01). In addi-
tion, ANFIS and GAMs outperformed MLR in 
one or several of the other index types (T, F and 
RC). On the other hand, RF did not show signifi-
cant enhancements in relation to MLR (K-W 
chi-squared=0.017439, df=1, p-value=0.8949). 

DISCUSSION

Model performance and predictor variables

This study confirms the findings of other works 
that not all the hydrological indices present the 
same potential to be predicted (Carlisle et al., 
2010; Yadav et al., 2007). Among the magnitude 
indices, MA and MH outperformed the ML 
indices. The high predictive performance of the 

leaving out one gauge at a time, developing a new 
model based on the remaining 155 observations 
and finally estimating the hydrological index for 
the left-out gauge. The results from this proce-
dure produced estimates of each hydrological 
metric as if the gauging station were an ungauged 
site. The variation between observed and predict-
ed values represents the uncertainty with which 
the model would be applied to predict index 
values at ungauged sites (Carlisle et al., 2010) 
and allows an assessment of the robustness of 
each method for estimating hydrological indices. 

We employed the root-mean-square-deviance 
(RMSD) and the adjusted R2 to assess the corre-
spondence between observed and estimated 
values as a relative performance of each model, 
following other authors (Carlisle et al., 2010; 
Sanborn & Bledsoe, 2006; Van Sickle et al., 
2006). Hence, models producing the lowest 
RMSD and the highest adjusted R2 were deemed 
superior. In addition, we used Kruscal-Wallis to 
test whether the differences in adjusted R2 found 
between the modeled indices and modeling 
techniques were significant.

homogeneous as possible based on series of 
binary rules. RF introduces random variation to 
CARTs by growing a defined number of trees 
with a bootstrap sample of the training data and a 
random sample of the predictors. The importance 
of the predictor variables is evaluated by random-
ly permuting each predictor variable in turn and 
predicting the response of the bootstrap sample 
observations. The decrease in prediction perfor-
mance is the measure of importance of the origi-
nal variable. Non-transformed response or 
predictor variables were used in the RF models.

Adaptive Neuro-Fuzzy Inference System (ANFIS)

ANFIS combines qualitative aspects of human 
knowledge from Fuzzy Inference Systems (FISs) 
with an effective, advanced machine learning 
method (neural networks) to adjust and tune these 
rules (Jang, 1993). 

A FIS is based on fuzzy decision rules and the 
fuzzy reasoning unit (Jang, 1993). The fuzzy 
decision rules (if-then rules) are rules expressed 
in the form “if X (input variable) is A then Y 
(output variable) is B”, where A (premise) and B 
(consequence) are linguistic values (e.g., high 
and low). Fuzzy logic allows, within these 
decision rules, any judgment state to take values 
between 0 and 1 according to its probability. In 
this regard, Membership Functions (MFs) are the 
functions that relate a variable to the probabilities 
associated with the judgment states.  

Fuzzy reasoning is an inference procedure 
used to derive conclusions from a set of fuzzy 
decision rules. The steps of fuzzy reasoning 
performed by a FIS are (Jang, 1993; Marce et al., 
2004):

1. Compare the input variables with the 
MFs in the premise part of the fuzzy rules to 
obtain the probability of each linguistic label 
(fuzzification).

2. Combine (through logic operators) the 
probability in the premise part to get the weight of 
each rule. 

3. Generate the qualified consequent of 
each rule depending on its weight.

4. Aggregate the qualified consequents to 
produce a crisp output (defuzzification). 

Given an input-output problem, the construc-

tion of a FIS has two fundamental steps: the spec-
ification of an appropriate number and type of 
input and output MFs (structure identification) 
and the specification of the shape of the MFs 
(parameter estimation). The structure identifica-
tion was solved by applying a trial-and-error 
procedure and a conservative criterion (i.e., mini-
mum number of parameters in the best fit). More-
over, since the maximum number of parameters 
to be fitted increases exponentially with the 
number of variables and MFs and the total 
number of parameters should not exceed 1/6 the 
number of cases (Marce et al., 2004), a maximum 
of 3 MFs was established.  Once the model struc-
ture, i.e., number of MFs, was defined, we 
estimated the parameters corresponding to each 
MF through the use of a numerical method called 
the Hybrid Learning Method (Marce et al., 2004). 
Specifically, these parameters were defined using 
adaptive neural networks algorithms. To avoid 
overfitting problems during the estimation of 
these parameters, the data set was randomly split 
into a training set (2/3 of the data set) used to fit 
the values and a trial set (1/3 of the data), which 
was not used by the hybrid learning algorithm. 
The splitting procedure was repeated 200 times 
and each time the parameters were adjusted 
individually. The hydrological indices were 
converted to the range (0 1), while the environ-
mental variables were converted to z-scores (i.e., 
mean=0, standard deviation=1) according to 
ANFIS requirements. Finally, to obtain the 
importance of the predictors in each model, envi-
ronmental variables were removed from the 
model one at a time while holding all other 
predictor variables. Then, for each model we 
calculated the predictive performance through the 
adjusted R2. The larger the decrease of predictive 
performance, the greater the assumed importance 
of that variable. 

Validation and evaluation of model perfor-
mance

A jackknife cross–validation procedure was 
performed with R statistical software to test the 
predictive performance of each modeling 
technique for the 16 hydrological indices. This 
cross-validation procedure was applied by 

Environmental variables (predictors)

Several studies have highlighted the importance 
of climate, topography, land cover and geology 
on the hydrological regime regardless of 
geographic location (Kennard et al., 2010; Lane 
et al., 2017; Sanborn & Bledsoe, 2006). Thus, 
environmental variables were used to explain the 
hydrological character of the recorded flow series 
and predict this character in the entire river 
network. A synthetic river network (SRN) was 
delineated using a 25-m digital elevation model 
(DEM) with the NestStream program (Benda et 
al., 2007). The SRN comprised 667 406 segments 
with lengths ranging from 16 to 800 m and was 
used as a spatial network to integrate the hydro-
logical and environmental information. Predictor 
variables were extracted from existing databases 
provided by several national and regional institu-
tions. The predictor variables for each segment 
represented the mean value of the variables in the 
upstream catchment. A set of 19 variables was 
selected (Table 2); detailed information regarding 
the units, scale and sources of information can be 
found in Peñas et al. (2014).

In addition, according to the maximum 
number of degrees of freedom allowed by the 
different techniques, a maximum of 6 predictor 
variables was established for the models. The 
selection of these 6 variables was based on the 
combination of scatter plots (hydrological 
indices versus environmental variables) and 
parametric correlations to identify the environ-
mental variables that were most meaningful for 
the prediction of each dependent variable (Knight 
et al., 2011). In this regard, the Pearson correla-
tion values between the hydrological indices and 
the predictor variables were used as the main 
screening criterion. Hence, for each hydrological 
index, we selected the 6 predictor variables with 
the highest correlation values. 

Modeling Techniques

The predictive performance of 4 distinct 
techniques to model hydrological indices was 
compared in this study. Modeling and statistical 
analysis were performed with R statistical 
software using the stats (v.3.3.2), gam (v.1.14) 

and randomForest (v.4.6 ) packages, except in the 
case of ANFIS models, which were developed 
using functions from the Mathwork´s MATLAB 
Fuzzy Logic Toolbox (FLT) included in a 
MATLAB code programmed by Marcé et al. 
(2004) and adapted by the authors to carry out the 
specific analyses performed in this study. The 
following section briefly describes each of the 
five modeling techniques.

Multiple Linear Regression (MLR)

MLR assumes a linear relationship between the 
predictor and the response variables through the 
estimation of parameters for each predictor. 
Specific transformations (Tables 1 and 2) were 
applied to meet the assumptions (normality, inde-
pendence and homoscedasticity) for applying 
MLR. If data did not meet the assumptions 
through any transformation, that which was 
closest to meeting these requirements was used. 
The relative importance of each variable was 
established based on the comparison of the 
regression test statistic T value. 

Generalized Additive Models (GAMs)

GAMs are semi-parametric models (Hastie & 
Tibshirani, 1986) that relate the predictor and 
dependent variable through a link function and 
estimate a non-parametric function for each 
predictor in order to adapt it to the local behavior 
of the regression function in several regions (Ven-
ables & Dichmont, 2004). The identity link func-
tion of the Gaussian family was applied to the 
transformed variables using the same transforma-
tions as in MLR, given that they were assumed to 
be normally distributed. Thin plate regression 
splines were used with a maximum of 3 degrees of 
freedom. Parallel to MLR, the relative importance 
of each variable was established based in the com-
parison of the regression test statistic T value. 

Random Forest (RF)

RF (Breiman, 2001) comprises an ensemble of 
individual Classification and Regression Trees 
(CARTs). CARTs split the dimensional space 
defined by the predictors into groups that are as 

unaffected by impoundments or significant 
abstraction upstream were selected for analysis. 
In addition, we selected gauges with data avail-
able for the 1976-2010 period and analyzed the 
quality of the series (Peñas et al., 2014). Finally, 
156 gauges were selected, which accounted for an 
average length of 17 years of data (Fig. 1).

It was beyond the scope of this study to 

predict and evaluate all the hydrological indices 
currently in use (see Olden & Poff, 2003); there-
fore, we selected one or several indices represent-
ing each of the five ecologically relevant aspects 
of the flow regime, i.e., magnitude, timing, 
frequency, duration and rate of change (Olden & 
Poff, 2003; Table 1).

tion fittings has been pointed out (Sanborn & 
Bledsoe, 2006). There are many examples of the 
use of other modeling and machine learning 
techniques to model many environmental issues 
(e.g., Alvarez-Cabria et al., 2016; Elith et al., 
2006; Manel et al., 1999, Marcé et al., 2004). In 
contrast, their application in the prediction of 
hydrological indices has been limited, although 
they could provide important benefits in this field 
(Alcázar et al., 2008; Heuvelmans et al., 2006; 
Snelder et al., 2009).

In this study we concentrated on developing 
statistical models for 16 hydrological indices 
covering the 5 ecologically relevant hydrologic 
attributes (i.e., magnitude, timing, frequency, 
duration and rate of change; Poff et al., 1997). We 
used one traditional technique (Multiple Linear 
Regression (MLR) and three more complex 
techniques that apply contrasting rationale to 
model the distribution of the response variable: 
Generalized Additive Models (GAMs), Random 
Forest (RF) and Adaptive Neuro-Fuzzy Inference 
System (ANFIS). Therefore, the objectives of this 
study were to 1) explore the ability of models to 
predict different types of hydrological indices and 
2) compare the performance of 5 modeling 
techniques to predict 16 hydrological indices at 
ungauged sites. 

METHODS

Study Area

The study area comprises the catchments of the 
northern third of the Iberian Peninsula (Fig. 1), 
covering a total area greater than 124 000 km2. It 
includes a heterogeneous set of environmental 
conditions. 

The area draining into the Cantabrian Sea 
encompasses several catchments with drainage 
areas ranging from 30 to 4907 km2, covering a 
total area of 22 000 km2. The rivers are confined 
by the Cantabrian Cordillera, which reaches up to 
2600 m a.s.l. and runs parallel to the coast. Thus, 
they are characterized by high slopes and short 
main stream lengths. The climate varies from 
thermo-temperate Atlantic on the coast to oro- 
and supra-temperate in the inner regions 
(Rivas-Martínez et al., 2004). Precipitation is 

abundant throughout the year with a mean of 
1300 mm/year, with maximum rainfall in Decem-
ber (150 mm/month) and minimum in July (50 
mm/month). Snowfall is frequent in winter above 
1000 m a.s.l. More than 50 % of the surface is 
covered by deciduous forest, scrubs and grass-
lands, while 10 % is occupied by agriculture. 

Meanwhile, the Mediterranean area is mainly 
covered by the Ebro catchment, along with a set 
of medium-sized basins in the east coast. The 
Ebro catchment covers a total area of 85 530 km2. 
It is enclosed by the Cantabrian Mountains and 
the Pyrenees (3400 m a.s.l.) in the north, the Cata-
lan Coastal Chain (1712 m a.s.l.) in the east, and 
from the north-west to the south-east by the 
Iberian massif (2300 m a.s.l.), which creates a 
dense river network in the catchment boundaries 
and an extended flat surface in the interior. This 
area is characterized by a meso-Mediterranean 
and supra-Mediterranean climate (Rivas-Martínez 
et al., 2004), with a mean annual precipitation of 
650 mm, varying from 300 mm in the central area 
of the main fluvial axis to 1700 mm in the Pyre-
nees Mountains, where snow is abundant in 
winter and early spring (Bejarano et al., 2010). 
The precipitation regime in the Mediterranean 
region has its maxima in autumn and spring and 
minima in winter and summer. Agricultural land 
accounts for 50 % of this territory. 

The Catalan catchments comprises several 
catchments ranging from 72 to 5000 km2, cover-
ing a total area of 16 500 km2 that drains directly 
from the Pyrenees or the Catalan Coastal Chain 
to the sea. This area is dominated by the Mediter-
ranean oceanic climate on the coast and a temper-
ate climate in the mountains. Precipitation 
declines from an annual mean of 1200 mm/year at 
the northern river heads to less than 500 mm/year 
in the southern catchments. Coniferous and 
broadleaf forest, scrubs and grasslands occupy 
more than 60 % of the surface in the northern 
catchments, which are progressively replaced by 
agricultural land in the south.

Hydrologic Data and Hydrological Indices

Several Spanish water agencies and regional 
governments provided series of daily mean flow 
measured at 428 gauging stations. Only gauges 

INTRODUCTION

River flow regime is a key element that structures 
freshwater ecosystems (Poff et al., 1997). Indeed, 
the understanding of the bio-physical associations 
between hydrological variability and stream 
biological communities is a critical scientific and 
management challenge (Alvarez-Cabria et al., 
2017). However, it is frequently the case that 
streamflow data are not available at a site of inter-
est such as where biomonitoring is carried out 
(Poff & Zimmerman, 2010; Sanborn & Bledsoe, 
2006). This hinders the exploration of the flow 
regime influence on stream ecology and ultimate-
ly the management of these systems. 

Natural flow regime can be described through 
a collection of ecologically relevant hydrological 
indices (Olden & Poff, 2003). Hence, interest in 

the prediction of these hydrological indices in 
ungauged streams has grown rapidly in recent 
years (Carlisle et al., 2010; Kennen et al., 2008). 
Most of the work has been aimed at addressing 
water yield and flooding issues. Thus, models to 
predict average flows, flood quantiles, flow dura-
tion curves or low-flow parameters dominate the 
literature (Sanborn & Bledsoe, 2006). In contrast, 
prediction of ecologically relevant hydrological 
indices has received limited attention (Carlisle et 
al., 2010; Knight et al., 2011; Sanborn & Bled-
soe, 2006). 

Multiple linear regression has been the most 
commonly used statistical technique to predict 
hydrological indices in ungauged sites (Knight et 
al., 2011). However, the potential improvement 
in model performance when using other modeling 
procedures that do not assume specific distribu-
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understanding of this technique over other 
machine learning approaches.

CONCLUSION

The application of four modeling techniques to 
predict 16 environmentally meaningful hydrologi-
cal indices evidenced that all techniques might be 
suitable, since they showed similar prediction 
ability. Nonetheless, the accuracy of complex 
modeling techniques equal to that of more classi-
cal methods may be associated with the low 
number of unaltered gauges used to fit the models. 
Expanding this comparison to larger areas with a 
higher number of unaltered gauges will allow the 
actual potential of the most sophisticated methods 
to be analyzed. ANFIS represented a slight 
improvement over MLR, although the computa-
tional cost and level of knowledge required to 
apply the method and interpret the results may 
limit its application. It is widely accepted that 
machine learning techniques are capable of 
dealing with linear and non-linear relationships. 
Hence, we believe that machine learning 
techniques must be considered when they do not 
entail a significant increase in the required 
resources and the links between hydrological 
indices and predictors can be clearly understood. 

On the other hand, not all hydrological indices 
were predicted with the same accuracy, resulting 
in critical implications and limitations depending 
on the further uses of these predictions. Magni-
tude and frequency indices were generally 
predicted with excellent accuracy, which opens a 
promising window to address several freshwater 
management and ecological issues. In contrast, 
none of the employed techniques allowed precise 
models for timing, duration and rate-of-change 
indices to be developed. Therefore, a major effort 
should be made to improve environmental 
databases in order to provide this climatic, 
geological, edaphological and groundwater infor-
mation on the spatio-temporal scales on which 
flow regime patterns are influenced.
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variety of ecological and earth science variables 
have also highlighted that alternative complex 
techniques did not exhibit great differences in 
their prediction accuracy relative to traditional 
modeling approaches (Manel et al., 1999; Mar-
mion et al., 2008). In contrast, other authors have 
found that complex modeling techniques outper-
formed linear approaches for predicting hydrolog-
ical attributes (Booker & Snelder, 2012; Tisseuil 
et al., 2010), fluvial nutrient load (Marce et al., 
2004) or species distribution (Elith et al., 2006). 
Most of these authors emphasized the high flexi-
bility of non-linear techniques in capturing com-
plex relationships between predictor and response 
variables (Elith et al., 2006). However, when the 
underlying data structure and assumptions are met 
for a particular modeling method (e.g., linearity 
for MLR), the application of complex techniques 
does not necessarily produce significant improve-
ments in model performance (Olden & Jackson, 
2002a). This is the case for the hydrological 
indices of magnitude. However, GAMs, RF and 
ANFIS usually outperformed MLR in indices in 
which linearity was rarely achieved, e.g., pred, 
FRE3, dPhigh, nPos and nNeg (Table 3). It must 
be also stressed that GAMs and ANFIS outper-
formed MLR (>5 %) in five and seven out of eight 
magnitude indices, respectively. GAMs allow for 
both linear and non-linear additive response 
shapes (Hastie & Tibshirani, 1986; Wood & 
Augustin, 2002). Hence, despite the linearity of 
several relationships, GAMs were able to tune the 
response more finely in specific sections where 
relationships were not linear. 

The small gains in predictive performance of 
complex modeling, i.e., machine learning, 
techniques can be attributed to the low number of 
training sites (Kampichler et al., 2010). Since 
machine learning techniques are viewed as 
data-intensive methods and the spatial availability 
of hydrological data sets is typically small, their 
application is limited. In this sense, studies in 
which complex modeling methods outperformed 
linear approaches have presented a number of 
sites on a scale of thousands (e.g., Prasad et al., 
2006), which contrasts with the 156 sites used in 
this work. Therefore, the application of these 
kinds of methods is promising where spatial 
coverage of hydrological data is substantial.  

Beyond the predictive performance of the 
models, other characteristics such as the statistical 
skills needed to develop them and interpret the 
results must be taken into account when selecting 
the optimal modeling technique. For instance, 
ANFIS required the definition of the number and 
shape of MF, and it is recommended (Marcé et al., 
2004) that these processes be carried out through 
an independent cross-validation process, as 
achieved in this work. On the other hand, the 
application of MLR involves complying with the 
assumptions of normality, homoscedasticity, inde-
pendence and linearity, which was accomplished 
through different transformations (Tables 1 and 
2). Given the disparity in the nature of hydrologi-
cal indices and environmental data, no single 
transformation could be applied systematically 
and, as shown here, transformation does not 
always assure compliance with assumptions. In 
contrast, RF was the only fully automated tech-
nique, in which the distribution of the variables 
does not have to comply with any assumption 
(Breiman, 2001), which reduces the time needed 
and facilitates its application by users who are not 
specialists in statistics. Lastly, the ability of each 
technique to identify the actual relationships 
between the hydrological indices and the environ-
mental variables must be taken into account. The 
four techniques agreed in the identification of the 
most important predictors for most of the models. 
However, MLR and GAMs allow straightforward 
relationships between predictors and response 
variables to be set (Manel et al., 1999). In contrast, 
machine learning methods have been largely seen 
as “black boxes.” For instance, the development 
of ANFIS models and the understanding of results 
require substantial time and knowledge, although 
enormous progress has been made in understand-
ing the relationships underlying this technique 
(Marce et al., 2004; Olden & Jackson, 2002b). On 
the other hand, RF results form an ensemble of 
regression trees and may also become a black box 
when interpreting the results (Prasad et al., 2006). 
Nonetheless, the ‘randomForest’ package of R 
statistical software incorporates specific functions 
to numerically and graphically visualize the 
marginal effect of each predictor variable on the 
response (e.g., Alvarez-Cabria et al., 2016). These 
features definitively facilitate the application and 

MA and MH indices is related to their dependence 
on precipitation events and direct catchment 
runoff (Tisseuil et al., 2010). Precipitation 
variables were derived from 1000x1000-m precip-
itation grids and it was demonstrated that they 
were precise enough to produce reliable models. In 
this regard, there are several previous studies that 
have found strong relationships between hydrolog-
ical variables and climatic predictor attributes 
(Carlise et al., 2010: Reidy-Liermann et al., 2011; 
Sanborn & Bledsoe, 2006). For instance, 
Reidy-Lierman et al. (2011) found that spring 
precipitation was the most important variable for 
discriminating rivers dominated by rain, snowmelt 
or mixed rivers. This agreed with our findings that 
Pre4 was among the most important variables for 
predicting flow magnitude, as all these river types 
can be found in this study area (Bejarano et al., 
2010). Moreover, Solans & Poff (2015) and Beja-
rano et al. (2010) found that the segregation of 
river types in the Ebro Basin is largely explained 
by the variability of climatic predictors such as 
temperature, evapotranspiration and precipitation. 
In this regard, the high gradient of EvMx and 
PreSu values that prevails from the oceanic west-
ern part to the eastern Mediterranean sector plays 
a significant role in the discrimination of flow 
magnitudes across the study area.

On the other hand, the errors of ML index 
models have been relatively high. In most 
instances, significant correlations between ML 
indices and soil and geology characteristics have 
been observed in previous works (Clausen & 
Pearson, 1995; Kroll et al., 2004, Lane et al., 
2017). The inclusion of these variables allowed 
prediction performances comparable to those 
showed by MA and MH indices to be obtained 
(Knight et al., 2011; Sanborn & Bledsoe, 2006). 
It is likely that the small contribution of these 
variables in the present study was due to the low 
precision of the geology and soil data rather than 
the lack of causal links. The most detailed soil 
and geology maps in the study area have a 1:200 
000 scale, which contrasts with the accuracy of 
the topography (25x25-m DEM), climatic 
(1000x1000-m grid) and land-use (1:25 000) data 
sources. Thus, we believe that improving soil and 
subsurface geology information should lead to 
improvements in modeling ML indices. 

Regressions carried out elsewhere (Knight et 
al., 2011; Sanborn & Bledsoe, 2006) have encoun-
tered difficulties in accurately predicting frequen-
cy indices, while we were able to predict FRE3 
with a reasonable accuracy. The most important 
predictor variables for FRE3 were ele and pre, 
which agreed with results highlighted in previous 
studies (Carlisle et al., 2010; Knight et al., 2011; 
Ourada et al., 2001). This result is not surprising, 
as the combination of peak flows of nonsynchro-
nous tributaries in the travel of flows downstream, 
i.e. to river segments showing lower elev, has been 
observed to attenuate and dampen flow peaks, 
reducing the number of times a flow overcomes a 
threshold (Naiman et al., 1998; Poff et al., 1997).

However, it must be also pointed out that 
FRE3 takes into account moderate-high flow 
events that usually last several days. The duration 
of these events contrasts with the time scale of the 
commonly available climate database. For 
instance, in our study area only mean monthly 
precipitation series were available, which presum-
ably lacked the proper time scale to characterize 
these events. Hence, the availability of daily 
precipitation data and its inclusion in models simi-
lar to those used in this study could be assumed to 
be highly beneficial for predicting these indices. 

In addition, the lack of proper predictor 
variables has probably been the critical element 
hindering the development of more accurate 
models for the duration, rate-of-change and 
timing indices. For these three groups of hydro-
logical indices, predictor variables derived from 
precipitation series (PreMx, PreMn and MPrRn) 
were the most contributing variables. Given these 
results, it could be speculated that that the wettest 
areas presented longer high-flow and shorter 
low-flow events, along with a higher rate of flow 
rise and fall, than zones where precipitation is 
scarce. However, even if these relationships may 
seem obvious and expected, they cannot be 
assured with certainty due to the low accuracy of 
the obtained models.  

Comparison of modeling techniques

Our analysis demonstrated that there was not an 
optimal technique to predict all hydrological 
indices. Several works focused on modeling a 

RESULTS

Model performance and predictor variables

The results exhibited a wide range of predictive 
performance, with adjusted R2s ranging from 
0.16 (MLR-Pred) to 0.88 (ANFIS-M4 and 
ANFIS-30HF; Table 3). However, all the models 
presented a level of significance p-value<0.01 
when tested against the F statistic hypothesis. 
Model performance was higher when predicting 
the flow magnitude (MA, MH and ML) and 
frequency indices (FH: FRE7) than when predict-
ing the timing (T: JMax; JMin and Pred), dura-
tion (DH: dPHigh and DL: dPLow) and 
rate-of-change (RC: nPos and nNeg) indices 
(K-W chi-squared=57.9, df=7, p-value<0.001; 
Table 3). In addition, for each hydrological index, 
the predictor variables kept the order of impor-
tance regardless of the modeling technique used. 
In this regard, it must be highlighted that, accord-
ing to the Person correlation values, neither of the 
geology variables, Perm and Hard, were selected 
within the set of 6 initial predictor variables. The 
MA (except for M9) and MH indices were 
predicted with excellent accuracy, showing 
adjusted R2s that commonly exceeded 0.8. In 
contrast, models of 30LF and X95 registered 
lower adjusted R2s, which ranged from 15 to 25 
% below those of the MA and MH indices. Are, 
annual (Pre), summer (PreSu) and April precipi-
tation (Pre4) were the most important variables in 
practically all the flow magnitude models, espe-
cially those developed for MA and MH. On the 
other hand, when predicting the M9 and ML 
indices, other environmental variables such as 
gra, EvMx and QPrRn presented high contribu-
tion rates to the models. The timing index models 
presented the lowest predictive performances 
(Table 3). In general, adjusted R2s for the JMax 
and JMin indices were not greater than 0.2, while 
the best model for Pred reached 0.4 (Table 3). Pre 
and MPrRn were selected in all models for Jmax. 
MPrRn, Eva and Ele were commonly included in 
the models for JMin. Pred was related mainly to 
PreMx and Gra. FRE3 was predicted with a max-
imum adjusted R2 of 0.71 (Table 3), and the most 
influential variables were Ele, PrMx and QPrRn. 
Models for predicting dPHigh and dPlow rarely 

reached an adjusted R2 over 0.3, and PrMx and 
PrMn were the most contributing variables, 
respectively (Table 3). Finally, models for nPos 
and nNeg showed adjusted R2s close to 0.5 (Table 
3). Pre, Ele and MPrRn were the most influential 
variables in all of these models. 

Comparison of modeling techniques

Differences in prediction accuracy among the 
different modeling techniques were not large 
(K-W chi-squared=1.44, df=3, p-value=0.7; Table 
3). However, although differences were not signif-
icant, it must be remarked that the GAMs and 
ANFIS techniques outperformed MLR by more 
than 5 % of the adjusted R2 in 10 and 13 hydrolog-
ical indices, respectively. The greatest improve-
ment in the predictive performance of these two 
techniques with respect to MLR was observed for 
the magnitude indices. ANFIS presented a mean 
increase of 7 % in the adjusted R2 compared to 
MLR in all the magnitude indices, but this only 
resulted in marginal differences (K-W 
chi-squared=2.8487, df=1, p-value=0.09). If only 
the MA and MH indices were considered, the 
differences in performance between MLR and 
ANFIS reached up to more than 10%, and signifi-
cant differences were observed (K-W 
chi-squared=5.13, df=1, p-value=0.02). Differ-
ences between MLR and GAMs that resulted in 
improvements in adjusted R2s beyond 5 % were 
found only for the MA and MH indices (WK-W 
chi-squared=6.72, df=1, p-value=0.01). In addi-
tion, ANFIS and GAMs outperformed MLR in 
one or several of the other index types (T, F and 
RC). On the other hand, RF did not show signifi-
cant enhancements in relation to MLR (K-W 
chi-squared=0.017439, df=1, p-value=0.8949). 

DISCUSSION

Model performance and predictor variables

This study confirms the findings of other works 
that not all the hydrological indices present the 
same potential to be predicted (Carlisle et al., 
2010; Yadav et al., 2007). Among the magnitude 
indices, MA and MH outperformed the ML 
indices. The high predictive performance of the 

leaving out one gauge at a time, developing a new 
model based on the remaining 155 observations 
and finally estimating the hydrological index for 
the left-out gauge. The results from this proce-
dure produced estimates of each hydrological 
metric as if the gauging station were an ungauged 
site. The variation between observed and predict-
ed values represents the uncertainty with which 
the model would be applied to predict index 
values at ungauged sites (Carlisle et al., 2010) 
and allows an assessment of the robustness of 
each method for estimating hydrological indices. 

We employed the root-mean-square-deviance 
(RMSD) and the adjusted R2 to assess the corre-
spondence between observed and estimated 
values as a relative performance of each model, 
following other authors (Carlisle et al., 2010; 
Sanborn & Bledsoe, 2006; Van Sickle et al., 
2006). Hence, models producing the lowest 
RMSD and the highest adjusted R2 were deemed 
superior. In addition, we used Kruscal-Wallis to 
test whether the differences in adjusted R2 found 
between the modeled indices and modeling 
techniques were significant.

homogeneous as possible based on series of 
binary rules. RF introduces random variation to 
CARTs by growing a defined number of trees 
with a bootstrap sample of the training data and a 
random sample of the predictors. The importance 
of the predictor variables is evaluated by random-
ly permuting each predictor variable in turn and 
predicting the response of the bootstrap sample 
observations. The decrease in prediction perfor-
mance is the measure of importance of the origi-
nal variable. Non-transformed response or 
predictor variables were used in the RF models.

Adaptive Neuro-Fuzzy Inference System (ANFIS)

ANFIS combines qualitative aspects of human 
knowledge from Fuzzy Inference Systems (FISs) 
with an effective, advanced machine learning 
method (neural networks) to adjust and tune these 
rules (Jang, 1993). 

A FIS is based on fuzzy decision rules and the 
fuzzy reasoning unit (Jang, 1993). The fuzzy 
decision rules (if-then rules) are rules expressed 
in the form “if X (input variable) is A then Y 
(output variable) is B”, where A (premise) and B 
(consequence) are linguistic values (e.g., high 
and low). Fuzzy logic allows, within these 
decision rules, any judgment state to take values 
between 0 and 1 according to its probability. In 
this regard, Membership Functions (MFs) are the 
functions that relate a variable to the probabilities 
associated with the judgment states.  

Fuzzy reasoning is an inference procedure 
used to derive conclusions from a set of fuzzy 
decision rules. The steps of fuzzy reasoning 
performed by a FIS are (Jang, 1993; Marce et al., 
2004):

1. Compare the input variables with the 
MFs in the premise part of the fuzzy rules to 
obtain the probability of each linguistic label 
(fuzzification).

2. Combine (through logic operators) the 
probability in the premise part to get the weight of 
each rule. 

3. Generate the qualified consequent of 
each rule depending on its weight.

4. Aggregate the qualified consequents to 
produce a crisp output (defuzzification). 

Given an input-output problem, the construc-

tion of a FIS has two fundamental steps: the spec-
ification of an appropriate number and type of 
input and output MFs (structure identification) 
and the specification of the shape of the MFs 
(parameter estimation). The structure identifica-
tion was solved by applying a trial-and-error 
procedure and a conservative criterion (i.e., mini-
mum number of parameters in the best fit). More-
over, since the maximum number of parameters 
to be fitted increases exponentially with the 
number of variables and MFs and the total 
number of parameters should not exceed 1/6 the 
number of cases (Marce et al., 2004), a maximum 
of 3 MFs was established.  Once the model struc-
ture, i.e., number of MFs, was defined, we 
estimated the parameters corresponding to each 
MF through the use of a numerical method called 
the Hybrid Learning Method (Marce et al., 2004). 
Specifically, these parameters were defined using 
adaptive neural networks algorithms. To avoid 
overfitting problems during the estimation of 
these parameters, the data set was randomly split 
into a training set (2/3 of the data set) used to fit 
the values and a trial set (1/3 of the data), which 
was not used by the hybrid learning algorithm. 
The splitting procedure was repeated 200 times 
and each time the parameters were adjusted 
individually. The hydrological indices were 
converted to the range (0 1), while the environ-
mental variables were converted to z-scores (i.e., 
mean=0, standard deviation=1) according to 
ANFIS requirements. Finally, to obtain the 
importance of the predictors in each model, envi-
ronmental variables were removed from the 
model one at a time while holding all other 
predictor variables. Then, for each model we 
calculated the predictive performance through the 
adjusted R2. The larger the decrease of predictive 
performance, the greater the assumed importance 
of that variable. 

Validation and evaluation of model perfor-
mance

A jackknife cross–validation procedure was 
performed with R statistical software to test the 
predictive performance of each modeling 
technique for the 16 hydrological indices. This 
cross-validation procedure was applied by 

Environmental variables (predictors)

Several studies have highlighted the importance 
of climate, topography, land cover and geology 
on the hydrological regime regardless of 
geographic location (Kennard et al., 2010; Lane 
et al., 2017; Sanborn & Bledsoe, 2006). Thus, 
environmental variables were used to explain the 
hydrological character of the recorded flow series 
and predict this character in the entire river 
network. A synthetic river network (SRN) was 
delineated using a 25-m digital elevation model 
(DEM) with the NestStream program (Benda et 
al., 2007). The SRN comprised 667 406 segments 
with lengths ranging from 16 to 800 m and was 
used as a spatial network to integrate the hydro-
logical and environmental information. Predictor 
variables were extracted from existing databases 
provided by several national and regional institu-
tions. The predictor variables for each segment 
represented the mean value of the variables in the 
upstream catchment. A set of 19 variables was 
selected (Table 2); detailed information regarding 
the units, scale and sources of information can be 
found in Peñas et al. (2014).

In addition, according to the maximum 
number of degrees of freedom allowed by the 
different techniques, a maximum of 6 predictor 
variables was established for the models. The 
selection of these 6 variables was based on the 
combination of scatter plots (hydrological 
indices versus environmental variables) and 
parametric correlations to identify the environ-
mental variables that were most meaningful for 
the prediction of each dependent variable (Knight 
et al., 2011). In this regard, the Pearson correla-
tion values between the hydrological indices and 
the predictor variables were used as the main 
screening criterion. Hence, for each hydrological 
index, we selected the 6 predictor variables with 
the highest correlation values. 

Modeling Techniques

The predictive performance of 4 distinct 
techniques to model hydrological indices was 
compared in this study. Modeling and statistical 
analysis were performed with R statistical 
software using the stats (v.3.3.2), gam (v.1.14) 

and randomForest (v.4.6 ) packages, except in the 
case of ANFIS models, which were developed 
using functions from the Mathwork´s MATLAB 
Fuzzy Logic Toolbox (FLT) included in a 
MATLAB code programmed by Marcé et al. 
(2004) and adapted by the authors to carry out the 
specific analyses performed in this study. The 
following section briefly describes each of the 
five modeling techniques.

Multiple Linear Regression (MLR)

MLR assumes a linear relationship between the 
predictor and the response variables through the 
estimation of parameters for each predictor. 
Specific transformations (Tables 1 and 2) were 
applied to meet the assumptions (normality, inde-
pendence and homoscedasticity) for applying 
MLR. If data did not meet the assumptions 
through any transformation, that which was 
closest to meeting these requirements was used. 
The relative importance of each variable was 
established based on the comparison of the 
regression test statistic T value. 

Generalized Additive Models (GAMs)

GAMs are semi-parametric models (Hastie & 
Tibshirani, 1986) that relate the predictor and 
dependent variable through a link function and 
estimate a non-parametric function for each 
predictor in order to adapt it to the local behavior 
of the regression function in several regions (Ven-
ables & Dichmont, 2004). The identity link func-
tion of the Gaussian family was applied to the 
transformed variables using the same transforma-
tions as in MLR, given that they were assumed to 
be normally distributed. Thin plate regression 
splines were used with a maximum of 3 degrees of 
freedom. Parallel to MLR, the relative importance 
of each variable was established based in the com-
parison of the regression test statistic T value. 

Random Forest (RF)

RF (Breiman, 2001) comprises an ensemble of 
individual Classification and Regression Trees 
(CARTs). CARTs split the dimensional space 
defined by the predictors into groups that are as 

unaffected by impoundments or significant 
abstraction upstream were selected for analysis. 
In addition, we selected gauges with data avail-
able for the 1976-2010 period and analyzed the 
quality of the series (Peñas et al., 2014). Finally, 
156 gauges were selected, which accounted for an 
average length of 17 years of data (Fig. 1).

It was beyond the scope of this study to 

predict and evaluate all the hydrological indices 
currently in use (see Olden & Poff, 2003); there-
fore, we selected one or several indices represent-
ing each of the five ecologically relevant aspects 
of the flow regime, i.e., magnitude, timing, 
frequency, duration and rate of change (Olden & 
Poff, 2003; Table 1).

tion fittings has been pointed out (Sanborn & 
Bledsoe, 2006). There are many examples of the 
use of other modeling and machine learning 
techniques to model many environmental issues 
(e.g., Alvarez-Cabria et al., 2016; Elith et al., 
2006; Manel et al., 1999, Marcé et al., 2004). In 
contrast, their application in the prediction of 
hydrological indices has been limited, although 
they could provide important benefits in this field 
(Alcázar et al., 2008; Heuvelmans et al., 2006; 
Snelder et al., 2009).

In this study we concentrated on developing 
statistical models for 16 hydrological indices 
covering the 5 ecologically relevant hydrologic 
attributes (i.e., magnitude, timing, frequency, 
duration and rate of change; Poff et al., 1997). We 
used one traditional technique (Multiple Linear 
Regression (MLR) and three more complex 
techniques that apply contrasting rationale to 
model the distribution of the response variable: 
Generalized Additive Models (GAMs), Random 
Forest (RF) and Adaptive Neuro-Fuzzy Inference 
System (ANFIS). Therefore, the objectives of this 
study were to 1) explore the ability of models to 
predict different types of hydrological indices and 
2) compare the performance of 5 modeling 
techniques to predict 16 hydrological indices at 
ungauged sites. 

METHODS

Study Area

The study area comprises the catchments of the 
northern third of the Iberian Peninsula (Fig. 1), 
covering a total area greater than 124 000 km2. It 
includes a heterogeneous set of environmental 
conditions. 

The area draining into the Cantabrian Sea 
encompasses several catchments with drainage 
areas ranging from 30 to 4907 km2, covering a 
total area of 22 000 km2. The rivers are confined 
by the Cantabrian Cordillera, which reaches up to 
2600 m a.s.l. and runs parallel to the coast. Thus, 
they are characterized by high slopes and short 
main stream lengths. The climate varies from 
thermo-temperate Atlantic on the coast to oro- 
and supra-temperate in the inner regions 
(Rivas-Martínez et al., 2004). Precipitation is 

abundant throughout the year with a mean of 
1300 mm/year, with maximum rainfall in Decem-
ber (150 mm/month) and minimum in July (50 
mm/month). Snowfall is frequent in winter above 
1000 m a.s.l. More than 50 % of the surface is 
covered by deciduous forest, scrubs and grass-
lands, while 10 % is occupied by agriculture. 

Meanwhile, the Mediterranean area is mainly 
covered by the Ebro catchment, along with a set 
of medium-sized basins in the east coast. The 
Ebro catchment covers a total area of 85 530 km2. 
It is enclosed by the Cantabrian Mountains and 
the Pyrenees (3400 m a.s.l.) in the north, the Cata-
lan Coastal Chain (1712 m a.s.l.) in the east, and 
from the north-west to the south-east by the 
Iberian massif (2300 m a.s.l.), which creates a 
dense river network in the catchment boundaries 
and an extended flat surface in the interior. This 
area is characterized by a meso-Mediterranean 
and supra-Mediterranean climate (Rivas-Martínez 
et al., 2004), with a mean annual precipitation of 
650 mm, varying from 300 mm in the central area 
of the main fluvial axis to 1700 mm in the Pyre-
nees Mountains, where snow is abundant in 
winter and early spring (Bejarano et al., 2010). 
The precipitation regime in the Mediterranean 
region has its maxima in autumn and spring and 
minima in winter and summer. Agricultural land 
accounts for 50 % of this territory. 

The Catalan catchments comprises several 
catchments ranging from 72 to 5000 km2, cover-
ing a total area of 16 500 km2 that drains directly 
from the Pyrenees or the Catalan Coastal Chain 
to the sea. This area is dominated by the Mediter-
ranean oceanic climate on the coast and a temper-
ate climate in the mountains. Precipitation 
declines from an annual mean of 1200 mm/year at 
the northern river heads to less than 500 mm/year 
in the southern catchments. Coniferous and 
broadleaf forest, scrubs and grasslands occupy 
more than 60 % of the surface in the northern 
catchments, which are progressively replaced by 
agricultural land in the south.

Hydrologic Data and Hydrological Indices

Several Spanish water agencies and regional 
governments provided series of daily mean flow 
measured at 428 gauging stations. Only gauges 

INTRODUCTION

River flow regime is a key element that structures 
freshwater ecosystems (Poff et al., 1997). Indeed, 
the understanding of the bio-physical associations 
between hydrological variability and stream 
biological communities is a critical scientific and 
management challenge (Alvarez-Cabria et al., 
2017). However, it is frequently the case that 
streamflow data are not available at a site of inter-
est such as where biomonitoring is carried out 
(Poff & Zimmerman, 2010; Sanborn & Bledsoe, 
2006). This hinders the exploration of the flow 
regime influence on stream ecology and ultimate-
ly the management of these systems. 

Natural flow regime can be described through 
a collection of ecologically relevant hydrological 
indices (Olden & Poff, 2003). Hence, interest in 

the prediction of these hydrological indices in 
ungauged streams has grown rapidly in recent 
years (Carlisle et al., 2010; Kennen et al., 2008). 
Most of the work has been aimed at addressing 
water yield and flooding issues. Thus, models to 
predict average flows, flood quantiles, flow dura-
tion curves or low-flow parameters dominate the 
literature (Sanborn & Bledsoe, 2006). In contrast, 
prediction of ecologically relevant hydrological 
indices has received limited attention (Carlisle et 
al., 2010; Knight et al., 2011; Sanborn & Bled-
soe, 2006). 

Multiple linear regression has been the most 
commonly used statistical technique to predict 
hydrological indices in ungauged sites (Knight et 
al., 2011). However, the potential improvement 
in model performance when using other modeling 
procedures that do not assume specific distribu-
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understanding of this technique over other 
machine learning approaches.

CONCLUSION

The application of four modeling techniques to 
predict 16 environmentally meaningful hydrologi-
cal indices evidenced that all techniques might be 
suitable, since they showed similar prediction 
ability. Nonetheless, the accuracy of complex 
modeling techniques equal to that of more classi-
cal methods may be associated with the low 
number of unaltered gauges used to fit the models. 
Expanding this comparison to larger areas with a 
higher number of unaltered gauges will allow the 
actual potential of the most sophisticated methods 
to be analyzed. ANFIS represented a slight 
improvement over MLR, although the computa-
tional cost and level of knowledge required to 
apply the method and interpret the results may 
limit its application. It is widely accepted that 
machine learning techniques are capable of 
dealing with linear and non-linear relationships. 
Hence, we believe that machine learning 
techniques must be considered when they do not 
entail a significant increase in the required 
resources and the links between hydrological 
indices and predictors can be clearly understood. 

On the other hand, not all hydrological indices 
were predicted with the same accuracy, resulting 
in critical implications and limitations depending 
on the further uses of these predictions. Magni-
tude and frequency indices were generally 
predicted with excellent accuracy, which opens a 
promising window to address several freshwater 
management and ecological issues. In contrast, 
none of the employed techniques allowed precise 
models for timing, duration and rate-of-change 
indices to be developed. Therefore, a major effort 
should be made to improve environmental 
databases in order to provide this climatic, 
geological, edaphological and groundwater infor-
mation on the spatio-temporal scales on which 
flow regime patterns are influenced.
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variety of ecological and earth science variables 
have also highlighted that alternative complex 
techniques did not exhibit great differences in 
their prediction accuracy relative to traditional 
modeling approaches (Manel et al., 1999; Mar-
mion et al., 2008). In contrast, other authors have 
found that complex modeling techniques outper-
formed linear approaches for predicting hydrolog-
ical attributes (Booker & Snelder, 2012; Tisseuil 
et al., 2010), fluvial nutrient load (Marce et al., 
2004) or species distribution (Elith et al., 2006). 
Most of these authors emphasized the high flexi-
bility of non-linear techniques in capturing com-
plex relationships between predictor and response 
variables (Elith et al., 2006). However, when the 
underlying data structure and assumptions are met 
for a particular modeling method (e.g., linearity 
for MLR), the application of complex techniques 
does not necessarily produce significant improve-
ments in model performance (Olden & Jackson, 
2002a). This is the case for the hydrological 
indices of magnitude. However, GAMs, RF and 
ANFIS usually outperformed MLR in indices in 
which linearity was rarely achieved, e.g., pred, 
FRE3, dPhigh, nPos and nNeg (Table 3). It must 
be also stressed that GAMs and ANFIS outper-
formed MLR (>5 %) in five and seven out of eight 
magnitude indices, respectively. GAMs allow for 
both linear and non-linear additive response 
shapes (Hastie & Tibshirani, 1986; Wood & 
Augustin, 2002). Hence, despite the linearity of 
several relationships, GAMs were able to tune the 
response more finely in specific sections where 
relationships were not linear. 

The small gains in predictive performance of 
complex modeling, i.e., machine learning, 
techniques can be attributed to the low number of 
training sites (Kampichler et al., 2010). Since 
machine learning techniques are viewed as 
data-intensive methods and the spatial availability 
of hydrological data sets is typically small, their 
application is limited. In this sense, studies in 
which complex modeling methods outperformed 
linear approaches have presented a number of 
sites on a scale of thousands (e.g., Prasad et al., 
2006), which contrasts with the 156 sites used in 
this work. Therefore, the application of these 
kinds of methods is promising where spatial 
coverage of hydrological data is substantial.  

Beyond the predictive performance of the 
models, other characteristics such as the statistical 
skills needed to develop them and interpret the 
results must be taken into account when selecting 
the optimal modeling technique. For instance, 
ANFIS required the definition of the number and 
shape of MF, and it is recommended (Marcé et al., 
2004) that these processes be carried out through 
an independent cross-validation process, as 
achieved in this work. On the other hand, the 
application of MLR involves complying with the 
assumptions of normality, homoscedasticity, inde-
pendence and linearity, which was accomplished 
through different transformations (Tables 1 and 
2). Given the disparity in the nature of hydrologi-
cal indices and environmental data, no single 
transformation could be applied systematically 
and, as shown here, transformation does not 
always assure compliance with assumptions. In 
contrast, RF was the only fully automated tech-
nique, in which the distribution of the variables 
does not have to comply with any assumption 
(Breiman, 2001), which reduces the time needed 
and facilitates its application by users who are not 
specialists in statistics. Lastly, the ability of each 
technique to identify the actual relationships 
between the hydrological indices and the environ-
mental variables must be taken into account. The 
four techniques agreed in the identification of the 
most important predictors for most of the models. 
However, MLR and GAMs allow straightforward 
relationships between predictors and response 
variables to be set (Manel et al., 1999). In contrast, 
machine learning methods have been largely seen 
as “black boxes.” For instance, the development 
of ANFIS models and the understanding of results 
require substantial time and knowledge, although 
enormous progress has been made in understand-
ing the relationships underlying this technique 
(Marce et al., 2004; Olden & Jackson, 2002b). On 
the other hand, RF results form an ensemble of 
regression trees and may also become a black box 
when interpreting the results (Prasad et al., 2006). 
Nonetheless, the ‘randomForest’ package of R 
statistical software incorporates specific functions 
to numerically and graphically visualize the 
marginal effect of each predictor variable on the 
response (e.g., Alvarez-Cabria et al., 2016). These 
features definitively facilitate the application and 

MA and MH indices is related to their dependence 
on precipitation events and direct catchment 
runoff (Tisseuil et al., 2010). Precipitation 
variables were derived from 1000x1000-m precip-
itation grids and it was demonstrated that they 
were precise enough to produce reliable models. In 
this regard, there are several previous studies that 
have found strong relationships between hydrolog-
ical variables and climatic predictor attributes 
(Carlise et al., 2010: Reidy-Liermann et al., 2011; 
Sanborn & Bledsoe, 2006). For instance, 
Reidy-Lierman et al. (2011) found that spring 
precipitation was the most important variable for 
discriminating rivers dominated by rain, snowmelt 
or mixed rivers. This agreed with our findings that 
Pre4 was among the most important variables for 
predicting flow magnitude, as all these river types 
can be found in this study area (Bejarano et al., 
2010). Moreover, Solans & Poff (2015) and Beja-
rano et al. (2010) found that the segregation of 
river types in the Ebro Basin is largely explained 
by the variability of climatic predictors such as 
temperature, evapotranspiration and precipitation. 
In this regard, the high gradient of EvMx and 
PreSu values that prevails from the oceanic west-
ern part to the eastern Mediterranean sector plays 
a significant role in the discrimination of flow 
magnitudes across the study area.

On the other hand, the errors of ML index 
models have been relatively high. In most 
instances, significant correlations between ML 
indices and soil and geology characteristics have 
been observed in previous works (Clausen & 
Pearson, 1995; Kroll et al., 2004, Lane et al., 
2017). The inclusion of these variables allowed 
prediction performances comparable to those 
showed by MA and MH indices to be obtained 
(Knight et al., 2011; Sanborn & Bledsoe, 2006). 
It is likely that the small contribution of these 
variables in the present study was due to the low 
precision of the geology and soil data rather than 
the lack of causal links. The most detailed soil 
and geology maps in the study area have a 1:200 
000 scale, which contrasts with the accuracy of 
the topography (25x25-m DEM), climatic 
(1000x1000-m grid) and land-use (1:25 000) data 
sources. Thus, we believe that improving soil and 
subsurface geology information should lead to 
improvements in modeling ML indices. 

Regressions carried out elsewhere (Knight et 
al., 2011; Sanborn & Bledsoe, 2006) have encoun-
tered difficulties in accurately predicting frequen-
cy indices, while we were able to predict FRE3 
with a reasonable accuracy. The most important 
predictor variables for FRE3 were ele and pre, 
which agreed with results highlighted in previous 
studies (Carlisle et al., 2010; Knight et al., 2011; 
Ourada et al., 2001). This result is not surprising, 
as the combination of peak flows of nonsynchro-
nous tributaries in the travel of flows downstream, 
i.e. to river segments showing lower elev, has been 
observed to attenuate and dampen flow peaks, 
reducing the number of times a flow overcomes a 
threshold (Naiman et al., 1998; Poff et al., 1997).

However, it must be also pointed out that 
FRE3 takes into account moderate-high flow 
events that usually last several days. The duration 
of these events contrasts with the time scale of the 
commonly available climate database. For 
instance, in our study area only mean monthly 
precipitation series were available, which presum-
ably lacked the proper time scale to characterize 
these events. Hence, the availability of daily 
precipitation data and its inclusion in models simi-
lar to those used in this study could be assumed to 
be highly beneficial for predicting these indices. 

In addition, the lack of proper predictor 
variables has probably been the critical element 
hindering the development of more accurate 
models for the duration, rate-of-change and 
timing indices. For these three groups of hydro-
logical indices, predictor variables derived from 
precipitation series (PreMx, PreMn and MPrRn) 
were the most contributing variables. Given these 
results, it could be speculated that that the wettest 
areas presented longer high-flow and shorter 
low-flow events, along with a higher rate of flow 
rise and fall, than zones where precipitation is 
scarce. However, even if these relationships may 
seem obvious and expected, they cannot be 
assured with certainty due to the low accuracy of 
the obtained models.  

Comparison of modeling techniques

Our analysis demonstrated that there was not an 
optimal technique to predict all hydrological 
indices. Several works focused on modeling a 

RESULTS

Model performance and predictor variables

The results exhibited a wide range of predictive 
performance, with adjusted R2s ranging from 
0.16 (MLR-Pred) to 0.88 (ANFIS-M4 and 
ANFIS-30HF; Table 3). However, all the models 
presented a level of significance p-value<0.01 
when tested against the F statistic hypothesis. 
Model performance was higher when predicting 
the flow magnitude (MA, MH and ML) and 
frequency indices (FH: FRE7) than when predict-
ing the timing (T: JMax; JMin and Pred), dura-
tion (DH: dPHigh and DL: dPLow) and 
rate-of-change (RC: nPos and nNeg) indices 
(K-W chi-squared=57.9, df=7, p-value<0.001; 
Table 3). In addition, for each hydrological index, 
the predictor variables kept the order of impor-
tance regardless of the modeling technique used. 
In this regard, it must be highlighted that, accord-
ing to the Person correlation values, neither of the 
geology variables, Perm and Hard, were selected 
within the set of 6 initial predictor variables. The 
MA (except for M9) and MH indices were 
predicted with excellent accuracy, showing 
adjusted R2s that commonly exceeded 0.8. In 
contrast, models of 30LF and X95 registered 
lower adjusted R2s, which ranged from 15 to 25 
% below those of the MA and MH indices. Are, 
annual (Pre), summer (PreSu) and April precipi-
tation (Pre4) were the most important variables in 
practically all the flow magnitude models, espe-
cially those developed for MA and MH. On the 
other hand, when predicting the M9 and ML 
indices, other environmental variables such as 
gra, EvMx and QPrRn presented high contribu-
tion rates to the models. The timing index models 
presented the lowest predictive performances 
(Table 3). In general, adjusted R2s for the JMax 
and JMin indices were not greater than 0.2, while 
the best model for Pred reached 0.4 (Table 3). Pre 
and MPrRn were selected in all models for Jmax. 
MPrRn, Eva and Ele were commonly included in 
the models for JMin. Pred was related mainly to 
PreMx and Gra. FRE3 was predicted with a max-
imum adjusted R2 of 0.71 (Table 3), and the most 
influential variables were Ele, PrMx and QPrRn. 
Models for predicting dPHigh and dPlow rarely 

reached an adjusted R2 over 0.3, and PrMx and 
PrMn were the most contributing variables, 
respectively (Table 3). Finally, models for nPos 
and nNeg showed adjusted R2s close to 0.5 (Table 
3). Pre, Ele and MPrRn were the most influential 
variables in all of these models. 

Comparison of modeling techniques

Differences in prediction accuracy among the 
different modeling techniques were not large 
(K-W chi-squared=1.44, df=3, p-value=0.7; Table 
3). However, although differences were not signif-
icant, it must be remarked that the GAMs and 
ANFIS techniques outperformed MLR by more 
than 5 % of the adjusted R2 in 10 and 13 hydrolog-
ical indices, respectively. The greatest improve-
ment in the predictive performance of these two 
techniques with respect to MLR was observed for 
the magnitude indices. ANFIS presented a mean 
increase of 7 % in the adjusted R2 compared to 
MLR in all the magnitude indices, but this only 
resulted in marginal differences (K-W 
chi-squared=2.8487, df=1, p-value=0.09). If only 
the MA and MH indices were considered, the 
differences in performance between MLR and 
ANFIS reached up to more than 10%, and signifi-
cant differences were observed (K-W 
chi-squared=5.13, df=1, p-value=0.02). Differ-
ences between MLR and GAMs that resulted in 
improvements in adjusted R2s beyond 5 % were 
found only for the MA and MH indices (WK-W 
chi-squared=6.72, df=1, p-value=0.01). In addi-
tion, ANFIS and GAMs outperformed MLR in 
one or several of the other index types (T, F and 
RC). On the other hand, RF did not show signifi-
cant enhancements in relation to MLR (K-W 
chi-squared=0.017439, df=1, p-value=0.8949). 

DISCUSSION

Model performance and predictor variables

This study confirms the findings of other works 
that not all the hydrological indices present the 
same potential to be predicted (Carlisle et al., 
2010; Yadav et al., 2007). Among the magnitude 
indices, MA and MH outperformed the ML 
indices. The high predictive performance of the 

leaving out one gauge at a time, developing a new 
model based on the remaining 155 observations 
and finally estimating the hydrological index for 
the left-out gauge. The results from this proce-
dure produced estimates of each hydrological 
metric as if the gauging station were an ungauged 
site. The variation between observed and predict-
ed values represents the uncertainty with which 
the model would be applied to predict index 
values at ungauged sites (Carlisle et al., 2010) 
and allows an assessment of the robustness of 
each method for estimating hydrological indices. 

We employed the root-mean-square-deviance 
(RMSD) and the adjusted R2 to assess the corre-
spondence between observed and estimated 
values as a relative performance of each model, 
following other authors (Carlisle et al., 2010; 
Sanborn & Bledsoe, 2006; Van Sickle et al., 
2006). Hence, models producing the lowest 
RMSD and the highest adjusted R2 were deemed 
superior. In addition, we used Kruscal-Wallis to 
test whether the differences in adjusted R2 found 
between the modeled indices and modeling 
techniques were significant.

homogeneous as possible based on series of 
binary rules. RF introduces random variation to 
CARTs by growing a defined number of trees 
with a bootstrap sample of the training data and a 
random sample of the predictors. The importance 
of the predictor variables is evaluated by random-
ly permuting each predictor variable in turn and 
predicting the response of the bootstrap sample 
observations. The decrease in prediction perfor-
mance is the measure of importance of the origi-
nal variable. Non-transformed response or 
predictor variables were used in the RF models.

Adaptive Neuro-Fuzzy Inference System (ANFIS)

ANFIS combines qualitative aspects of human 
knowledge from Fuzzy Inference Systems (FISs) 
with an effective, advanced machine learning 
method (neural networks) to adjust and tune these 
rules (Jang, 1993). 

A FIS is based on fuzzy decision rules and the 
fuzzy reasoning unit (Jang, 1993). The fuzzy 
decision rules (if-then rules) are rules expressed 
in the form “if X (input variable) is A then Y 
(output variable) is B”, where A (premise) and B 
(consequence) are linguistic values (e.g., high 
and low). Fuzzy logic allows, within these 
decision rules, any judgment state to take values 
between 0 and 1 according to its probability. In 
this regard, Membership Functions (MFs) are the 
functions that relate a variable to the probabilities 
associated with the judgment states.  

Fuzzy reasoning is an inference procedure 
used to derive conclusions from a set of fuzzy 
decision rules. The steps of fuzzy reasoning 
performed by a FIS are (Jang, 1993; Marce et al., 
2004):

1. Compare the input variables with the 
MFs in the premise part of the fuzzy rules to 
obtain the probability of each linguistic label 
(fuzzification).

2. Combine (through logic operators) the 
probability in the premise part to get the weight of 
each rule. 

3. Generate the qualified consequent of 
each rule depending on its weight.

4. Aggregate the qualified consequents to 
produce a crisp output (defuzzification). 

Given an input-output problem, the construc-

tion of a FIS has two fundamental steps: the spec-
ification of an appropriate number and type of 
input and output MFs (structure identification) 
and the specification of the shape of the MFs 
(parameter estimation). The structure identifica-
tion was solved by applying a trial-and-error 
procedure and a conservative criterion (i.e., mini-
mum number of parameters in the best fit). More-
over, since the maximum number of parameters 
to be fitted increases exponentially with the 
number of variables and MFs and the total 
number of parameters should not exceed 1/6 the 
number of cases (Marce et al., 2004), a maximum 
of 3 MFs was established.  Once the model struc-
ture, i.e., number of MFs, was defined, we 
estimated the parameters corresponding to each 
MF through the use of a numerical method called 
the Hybrid Learning Method (Marce et al., 2004). 
Specifically, these parameters were defined using 
adaptive neural networks algorithms. To avoid 
overfitting problems during the estimation of 
these parameters, the data set was randomly split 
into a training set (2/3 of the data set) used to fit 
the values and a trial set (1/3 of the data), which 
was not used by the hybrid learning algorithm. 
The splitting procedure was repeated 200 times 
and each time the parameters were adjusted 
individually. The hydrological indices were 
converted to the range (0 1), while the environ-
mental variables were converted to z-scores (i.e., 
mean=0, standard deviation=1) according to 
ANFIS requirements. Finally, to obtain the 
importance of the predictors in each model, envi-
ronmental variables were removed from the 
model one at a time while holding all other 
predictor variables. Then, for each model we 
calculated the predictive performance through the 
adjusted R2. The larger the decrease of predictive 
performance, the greater the assumed importance 
of that variable. 

Validation and evaluation of model perfor-
mance

A jackknife cross–validation procedure was 
performed with R statistical software to test the 
predictive performance of each modeling 
technique for the 16 hydrological indices. This 
cross-validation procedure was applied by 

Environmental variables (predictors)

Several studies have highlighted the importance 
of climate, topography, land cover and geology 
on the hydrological regime regardless of 
geographic location (Kennard et al., 2010; Lane 
et al., 2017; Sanborn & Bledsoe, 2006). Thus, 
environmental variables were used to explain the 
hydrological character of the recorded flow series 
and predict this character in the entire river 
network. A synthetic river network (SRN) was 
delineated using a 25-m digital elevation model 
(DEM) with the NestStream program (Benda et 
al., 2007). The SRN comprised 667 406 segments 
with lengths ranging from 16 to 800 m and was 
used as a spatial network to integrate the hydro-
logical and environmental information. Predictor 
variables were extracted from existing databases 
provided by several national and regional institu-
tions. The predictor variables for each segment 
represented the mean value of the variables in the 
upstream catchment. A set of 19 variables was 
selected (Table 2); detailed information regarding 
the units, scale and sources of information can be 
found in Peñas et al. (2014).

In addition, according to the maximum 
number of degrees of freedom allowed by the 
different techniques, a maximum of 6 predictor 
variables was established for the models. The 
selection of these 6 variables was based on the 
combination of scatter plots (hydrological 
indices versus environmental variables) and 
parametric correlations to identify the environ-
mental variables that were most meaningful for 
the prediction of each dependent variable (Knight 
et al., 2011). In this regard, the Pearson correla-
tion values between the hydrological indices and 
the predictor variables were used as the main 
screening criterion. Hence, for each hydrological 
index, we selected the 6 predictor variables with 
the highest correlation values. 

Modeling Techniques

The predictive performance of 4 distinct 
techniques to model hydrological indices was 
compared in this study. Modeling and statistical 
analysis were performed with R statistical 
software using the stats (v.3.3.2), gam (v.1.14) 

and randomForest (v.4.6 ) packages, except in the 
case of ANFIS models, which were developed 
using functions from the Mathwork´s MATLAB 
Fuzzy Logic Toolbox (FLT) included in a 
MATLAB code programmed by Marcé et al. 
(2004) and adapted by the authors to carry out the 
specific analyses performed in this study. The 
following section briefly describes each of the 
five modeling techniques.

Multiple Linear Regression (MLR)

MLR assumes a linear relationship between the 
predictor and the response variables through the 
estimation of parameters for each predictor. 
Specific transformations (Tables 1 and 2) were 
applied to meet the assumptions (normality, inde-
pendence and homoscedasticity) for applying 
MLR. If data did not meet the assumptions 
through any transformation, that which was 
closest to meeting these requirements was used. 
The relative importance of each variable was 
established based on the comparison of the 
regression test statistic T value. 

Generalized Additive Models (GAMs)

GAMs are semi-parametric models (Hastie & 
Tibshirani, 1986) that relate the predictor and 
dependent variable through a link function and 
estimate a non-parametric function for each 
predictor in order to adapt it to the local behavior 
of the regression function in several regions (Ven-
ables & Dichmont, 2004). The identity link func-
tion of the Gaussian family was applied to the 
transformed variables using the same transforma-
tions as in MLR, given that they were assumed to 
be normally distributed. Thin plate regression 
splines were used with a maximum of 3 degrees of 
freedom. Parallel to MLR, the relative importance 
of each variable was established based in the com-
parison of the regression test statistic T value. 

Random Forest (RF)

RF (Breiman, 2001) comprises an ensemble of 
individual Classification and Regression Trees 
(CARTs). CARTs split the dimensional space 
defined by the predictors into groups that are as 

unaffected by impoundments or significant 
abstraction upstream were selected for analysis. 
In addition, we selected gauges with data avail-
able for the 1976-2010 period and analyzed the 
quality of the series (Peñas et al., 2014). Finally, 
156 gauges were selected, which accounted for an 
average length of 17 years of data (Fig. 1).

It was beyond the scope of this study to 

predict and evaluate all the hydrological indices 
currently in use (see Olden & Poff, 2003); there-
fore, we selected one or several indices represent-
ing each of the five ecologically relevant aspects 
of the flow regime, i.e., magnitude, timing, 
frequency, duration and rate of change (Olden & 
Poff, 2003; Table 1).

tion fittings has been pointed out (Sanborn & 
Bledsoe, 2006). There are many examples of the 
use of other modeling and machine learning 
techniques to model many environmental issues 
(e.g., Alvarez-Cabria et al., 2016; Elith et al., 
2006; Manel et al., 1999, Marcé et al., 2004). In 
contrast, their application in the prediction of 
hydrological indices has been limited, although 
they could provide important benefits in this field 
(Alcázar et al., 2008; Heuvelmans et al., 2006; 
Snelder et al., 2009).

In this study we concentrated on developing 
statistical models for 16 hydrological indices 
covering the 5 ecologically relevant hydrologic 
attributes (i.e., magnitude, timing, frequency, 
duration and rate of change; Poff et al., 1997). We 
used one traditional technique (Multiple Linear 
Regression (MLR) and three more complex 
techniques that apply contrasting rationale to 
model the distribution of the response variable: 
Generalized Additive Models (GAMs), Random 
Forest (RF) and Adaptive Neuro-Fuzzy Inference 
System (ANFIS). Therefore, the objectives of this 
study were to 1) explore the ability of models to 
predict different types of hydrological indices and 
2) compare the performance of 5 modeling 
techniques to predict 16 hydrological indices at 
ungauged sites. 

METHODS

Study Area

The study area comprises the catchments of the 
northern third of the Iberian Peninsula (Fig. 1), 
covering a total area greater than 124 000 km2. It 
includes a heterogeneous set of environmental 
conditions. 

The area draining into the Cantabrian Sea 
encompasses several catchments with drainage 
areas ranging from 30 to 4907 km2, covering a 
total area of 22 000 km2. The rivers are confined 
by the Cantabrian Cordillera, which reaches up to 
2600 m a.s.l. and runs parallel to the coast. Thus, 
they are characterized by high slopes and short 
main stream lengths. The climate varies from 
thermo-temperate Atlantic on the coast to oro- 
and supra-temperate in the inner regions 
(Rivas-Martínez et al., 2004). Precipitation is 

abundant throughout the year with a mean of 
1300 mm/year, with maximum rainfall in Decem-
ber (150 mm/month) and minimum in July (50 
mm/month). Snowfall is frequent in winter above 
1000 m a.s.l. More than 50 % of the surface is 
covered by deciduous forest, scrubs and grass-
lands, while 10 % is occupied by agriculture. 

Meanwhile, the Mediterranean area is mainly 
covered by the Ebro catchment, along with a set 
of medium-sized basins in the east coast. The 
Ebro catchment covers a total area of 85 530 km2. 
It is enclosed by the Cantabrian Mountains and 
the Pyrenees (3400 m a.s.l.) in the north, the Cata-
lan Coastal Chain (1712 m a.s.l.) in the east, and 
from the north-west to the south-east by the 
Iberian massif (2300 m a.s.l.), which creates a 
dense river network in the catchment boundaries 
and an extended flat surface in the interior. This 
area is characterized by a meso-Mediterranean 
and supra-Mediterranean climate (Rivas-Martínez 
et al., 2004), with a mean annual precipitation of 
650 mm, varying from 300 mm in the central area 
of the main fluvial axis to 1700 mm in the Pyre-
nees Mountains, where snow is abundant in 
winter and early spring (Bejarano et al., 2010). 
The precipitation regime in the Mediterranean 
region has its maxima in autumn and spring and 
minima in winter and summer. Agricultural land 
accounts for 50 % of this territory. 

The Catalan catchments comprises several 
catchments ranging from 72 to 5000 km2, cover-
ing a total area of 16 500 km2 that drains directly 
from the Pyrenees or the Catalan Coastal Chain 
to the sea. This area is dominated by the Mediter-
ranean oceanic climate on the coast and a temper-
ate climate in the mountains. Precipitation 
declines from an annual mean of 1200 mm/year at 
the northern river heads to less than 500 mm/year 
in the southern catchments. Coniferous and 
broadleaf forest, scrubs and grasslands occupy 
more than 60 % of the surface in the northern 
catchments, which are progressively replaced by 
agricultural land in the south.

Hydrologic Data and Hydrological Indices

Several Spanish water agencies and regional 
governments provided series of daily mean flow 
measured at 428 gauging stations. Only gauges 

INTRODUCTION

River flow regime is a key element that structures 
freshwater ecosystems (Poff et al., 1997). Indeed, 
the understanding of the bio-physical associations 
between hydrological variability and stream 
biological communities is a critical scientific and 
management challenge (Alvarez-Cabria et al., 
2017). However, it is frequently the case that 
streamflow data are not available at a site of inter-
est such as where biomonitoring is carried out 
(Poff & Zimmerman, 2010; Sanborn & Bledsoe, 
2006). This hinders the exploration of the flow 
regime influence on stream ecology and ultimate-
ly the management of these systems. 

Natural flow regime can be described through 
a collection of ecologically relevant hydrological 
indices (Olden & Poff, 2003). Hence, interest in 

the prediction of these hydrological indices in 
ungauged streams has grown rapidly in recent 
years (Carlisle et al., 2010; Kennen et al., 2008). 
Most of the work has been aimed at addressing 
water yield and flooding issues. Thus, models to 
predict average flows, flood quantiles, flow dura-
tion curves or low-flow parameters dominate the 
literature (Sanborn & Bledsoe, 2006). In contrast, 
prediction of ecologically relevant hydrological 
indices has received limited attention (Carlisle et 
al., 2010; Knight et al., 2011; Sanborn & Bled-
soe, 2006). 

Multiple linear regression has been the most 
commonly used statistical technique to predict 
hydrological indices in ungauged sites (Knight et 
al., 2011). However, the potential improvement 
in model performance when using other modeling 
procedures that do not assume specific distribu-
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understanding of this technique over other 
machine learning approaches.

CONCLUSION

The application of four modeling techniques to 
predict 16 environmentally meaningful hydrologi-
cal indices evidenced that all techniques might be 
suitable, since they showed similar prediction 
ability. Nonetheless, the accuracy of complex 
modeling techniques equal to that of more classi-
cal methods may be associated with the low 
number of unaltered gauges used to fit the models. 
Expanding this comparison to larger areas with a 
higher number of unaltered gauges will allow the 
actual potential of the most sophisticated methods 
to be analyzed. ANFIS represented a slight 
improvement over MLR, although the computa-
tional cost and level of knowledge required to 
apply the method and interpret the results may 
limit its application. It is widely accepted that 
machine learning techniques are capable of 
dealing with linear and non-linear relationships. 
Hence, we believe that machine learning 
techniques must be considered when they do not 
entail a significant increase in the required 
resources and the links between hydrological 
indices and predictors can be clearly understood. 

On the other hand, not all hydrological indices 
were predicted with the same accuracy, resulting 
in critical implications and limitations depending 
on the further uses of these predictions. Magni-
tude and frequency indices were generally 
predicted with excellent accuracy, which opens a 
promising window to address several freshwater 
management and ecological issues. In contrast, 
none of the employed techniques allowed precise 
models for timing, duration and rate-of-change 
indices to be developed. Therefore, a major effort 
should be made to improve environmental 
databases in order to provide this climatic, 
geological, edaphological and groundwater infor-
mation on the spatio-temporal scales on which 
flow regime patterns are influenced.
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variety of ecological and earth science variables 
have also highlighted that alternative complex 
techniques did not exhibit great differences in 
their prediction accuracy relative to traditional 
modeling approaches (Manel et al., 1999; Mar-
mion et al., 2008). In contrast, other authors have 
found that complex modeling techniques outper-
formed linear approaches for predicting hydrolog-
ical attributes (Booker & Snelder, 2012; Tisseuil 
et al., 2010), fluvial nutrient load (Marce et al., 
2004) or species distribution (Elith et al., 2006). 
Most of these authors emphasized the high flexi-
bility of non-linear techniques in capturing com-
plex relationships between predictor and response 
variables (Elith et al., 2006). However, when the 
underlying data structure and assumptions are met 
for a particular modeling method (e.g., linearity 
for MLR), the application of complex techniques 
does not necessarily produce significant improve-
ments in model performance (Olden & Jackson, 
2002a). This is the case for the hydrological 
indices of magnitude. However, GAMs, RF and 
ANFIS usually outperformed MLR in indices in 
which linearity was rarely achieved, e.g., pred, 
FRE3, dPhigh, nPos and nNeg (Table 3). It must 
be also stressed that GAMs and ANFIS outper-
formed MLR (>5 %) in five and seven out of eight 
magnitude indices, respectively. GAMs allow for 
both linear and non-linear additive response 
shapes (Hastie & Tibshirani, 1986; Wood & 
Augustin, 2002). Hence, despite the linearity of 
several relationships, GAMs were able to tune the 
response more finely in specific sections where 
relationships were not linear. 

The small gains in predictive performance of 
complex modeling, i.e., machine learning, 
techniques can be attributed to the low number of 
training sites (Kampichler et al., 2010). Since 
machine learning techniques are viewed as 
data-intensive methods and the spatial availability 
of hydrological data sets is typically small, their 
application is limited. In this sense, studies in 
which complex modeling methods outperformed 
linear approaches have presented a number of 
sites on a scale of thousands (e.g., Prasad et al., 
2006), which contrasts with the 156 sites used in 
this work. Therefore, the application of these 
kinds of methods is promising where spatial 
coverage of hydrological data is substantial.  

Beyond the predictive performance of the 
models, other characteristics such as the statistical 
skills needed to develop them and interpret the 
results must be taken into account when selecting 
the optimal modeling technique. For instance, 
ANFIS required the definition of the number and 
shape of MF, and it is recommended (Marcé et al., 
2004) that these processes be carried out through 
an independent cross-validation process, as 
achieved in this work. On the other hand, the 
application of MLR involves complying with the 
assumptions of normality, homoscedasticity, inde-
pendence and linearity, which was accomplished 
through different transformations (Tables 1 and 
2). Given the disparity in the nature of hydrologi-
cal indices and environmental data, no single 
transformation could be applied systematically 
and, as shown here, transformation does not 
always assure compliance with assumptions. In 
contrast, RF was the only fully automated tech-
nique, in which the distribution of the variables 
does not have to comply with any assumption 
(Breiman, 2001), which reduces the time needed 
and facilitates its application by users who are not 
specialists in statistics. Lastly, the ability of each 
technique to identify the actual relationships 
between the hydrological indices and the environ-
mental variables must be taken into account. The 
four techniques agreed in the identification of the 
most important predictors for most of the models. 
However, MLR and GAMs allow straightforward 
relationships between predictors and response 
variables to be set (Manel et al., 1999). In contrast, 
machine learning methods have been largely seen 
as “black boxes.” For instance, the development 
of ANFIS models and the understanding of results 
require substantial time and knowledge, although 
enormous progress has been made in understand-
ing the relationships underlying this technique 
(Marce et al., 2004; Olden & Jackson, 2002b). On 
the other hand, RF results form an ensemble of 
regression trees and may also become a black box 
when interpreting the results (Prasad et al., 2006). 
Nonetheless, the ‘randomForest’ package of R 
statistical software incorporates specific functions 
to numerically and graphically visualize the 
marginal effect of each predictor variable on the 
response (e.g., Alvarez-Cabria et al., 2016). These 
features definitively facilitate the application and 

MA and MH indices is related to their dependence 
on precipitation events and direct catchment 
runoff (Tisseuil et al., 2010). Precipitation 
variables were derived from 1000x1000-m precip-
itation grids and it was demonstrated that they 
were precise enough to produce reliable models. In 
this regard, there are several previous studies that 
have found strong relationships between hydrolog-
ical variables and climatic predictor attributes 
(Carlise et al., 2010: Reidy-Liermann et al., 2011; 
Sanborn & Bledsoe, 2006). For instance, 
Reidy-Lierman et al. (2011) found that spring 
precipitation was the most important variable for 
discriminating rivers dominated by rain, snowmelt 
or mixed rivers. This agreed with our findings that 
Pre4 was among the most important variables for 
predicting flow magnitude, as all these river types 
can be found in this study area (Bejarano et al., 
2010). Moreover, Solans & Poff (2015) and Beja-
rano et al. (2010) found that the segregation of 
river types in the Ebro Basin is largely explained 
by the variability of climatic predictors such as 
temperature, evapotranspiration and precipitation. 
In this regard, the high gradient of EvMx and 
PreSu values that prevails from the oceanic west-
ern part to the eastern Mediterranean sector plays 
a significant role in the discrimination of flow 
magnitudes across the study area.

On the other hand, the errors of ML index 
models have been relatively high. In most 
instances, significant correlations between ML 
indices and soil and geology characteristics have 
been observed in previous works (Clausen & 
Pearson, 1995; Kroll et al., 2004, Lane et al., 
2017). The inclusion of these variables allowed 
prediction performances comparable to those 
showed by MA and MH indices to be obtained 
(Knight et al., 2011; Sanborn & Bledsoe, 2006). 
It is likely that the small contribution of these 
variables in the present study was due to the low 
precision of the geology and soil data rather than 
the lack of causal links. The most detailed soil 
and geology maps in the study area have a 1:200 
000 scale, which contrasts with the accuracy of 
the topography (25x25-m DEM), climatic 
(1000x1000-m grid) and land-use (1:25 000) data 
sources. Thus, we believe that improving soil and 
subsurface geology information should lead to 
improvements in modeling ML indices. 

Regressions carried out elsewhere (Knight et 
al., 2011; Sanborn & Bledsoe, 2006) have encoun-
tered difficulties in accurately predicting frequen-
cy indices, while we were able to predict FRE3 
with a reasonable accuracy. The most important 
predictor variables for FRE3 were ele and pre, 
which agreed with results highlighted in previous 
studies (Carlisle et al., 2010; Knight et al., 2011; 
Ourada et al., 2001). This result is not surprising, 
as the combination of peak flows of nonsynchro-
nous tributaries in the travel of flows downstream, 
i.e. to river segments showing lower elev, has been 
observed to attenuate and dampen flow peaks, 
reducing the number of times a flow overcomes a 
threshold (Naiman et al., 1998; Poff et al., 1997).

However, it must be also pointed out that 
FRE3 takes into account moderate-high flow 
events that usually last several days. The duration 
of these events contrasts with the time scale of the 
commonly available climate database. For 
instance, in our study area only mean monthly 
precipitation series were available, which presum-
ably lacked the proper time scale to characterize 
these events. Hence, the availability of daily 
precipitation data and its inclusion in models simi-
lar to those used in this study could be assumed to 
be highly beneficial for predicting these indices. 

In addition, the lack of proper predictor 
variables has probably been the critical element 
hindering the development of more accurate 
models for the duration, rate-of-change and 
timing indices. For these three groups of hydro-
logical indices, predictor variables derived from 
precipitation series (PreMx, PreMn and MPrRn) 
were the most contributing variables. Given these 
results, it could be speculated that that the wettest 
areas presented longer high-flow and shorter 
low-flow events, along with a higher rate of flow 
rise and fall, than zones where precipitation is 
scarce. However, even if these relationships may 
seem obvious and expected, they cannot be 
assured with certainty due to the low accuracy of 
the obtained models.  

Comparison of modeling techniques

Our analysis demonstrated that there was not an 
optimal technique to predict all hydrological 
indices. Several works focused on modeling a 

RESULTS

Model performance and predictor variables

The results exhibited a wide range of predictive 
performance, with adjusted R2s ranging from 
0.16 (MLR-Pred) to 0.88 (ANFIS-M4 and 
ANFIS-30HF; Table 3). However, all the models 
presented a level of significance p-value<0.01 
when tested against the F statistic hypothesis. 
Model performance was higher when predicting 
the flow magnitude (MA, MH and ML) and 
frequency indices (FH: FRE7) than when predict-
ing the timing (T: JMax; JMin and Pred), dura-
tion (DH: dPHigh and DL: dPLow) and 
rate-of-change (RC: nPos and nNeg) indices 
(K-W chi-squared=57.9, df=7, p-value<0.001; 
Table 3). In addition, for each hydrological index, 
the predictor variables kept the order of impor-
tance regardless of the modeling technique used. 
In this regard, it must be highlighted that, accord-
ing to the Person correlation values, neither of the 
geology variables, Perm and Hard, were selected 
within the set of 6 initial predictor variables. The 
MA (except for M9) and MH indices were 
predicted with excellent accuracy, showing 
adjusted R2s that commonly exceeded 0.8. In 
contrast, models of 30LF and X95 registered 
lower adjusted R2s, which ranged from 15 to 25 
% below those of the MA and MH indices. Are, 
annual (Pre), summer (PreSu) and April precipi-
tation (Pre4) were the most important variables in 
practically all the flow magnitude models, espe-
cially those developed for MA and MH. On the 
other hand, when predicting the M9 and ML 
indices, other environmental variables such as 
gra, EvMx and QPrRn presented high contribu-
tion rates to the models. The timing index models 
presented the lowest predictive performances 
(Table 3). In general, adjusted R2s for the JMax 
and JMin indices were not greater than 0.2, while 
the best model for Pred reached 0.4 (Table 3). Pre 
and MPrRn were selected in all models for Jmax. 
MPrRn, Eva and Ele were commonly included in 
the models for JMin. Pred was related mainly to 
PreMx and Gra. FRE3 was predicted with a max-
imum adjusted R2 of 0.71 (Table 3), and the most 
influential variables were Ele, PrMx and QPrRn. 
Models for predicting dPHigh and dPlow rarely 

reached an adjusted R2 over 0.3, and PrMx and 
PrMn were the most contributing variables, 
respectively (Table 3). Finally, models for nPos 
and nNeg showed adjusted R2s close to 0.5 (Table 
3). Pre, Ele and MPrRn were the most influential 
variables in all of these models. 

Comparison of modeling techniques

Differences in prediction accuracy among the 
different modeling techniques were not large 
(K-W chi-squared=1.44, df=3, p-value=0.7; Table 
3). However, although differences were not signif-
icant, it must be remarked that the GAMs and 
ANFIS techniques outperformed MLR by more 
than 5 % of the adjusted R2 in 10 and 13 hydrolog-
ical indices, respectively. The greatest improve-
ment in the predictive performance of these two 
techniques with respect to MLR was observed for 
the magnitude indices. ANFIS presented a mean 
increase of 7 % in the adjusted R2 compared to 
MLR in all the magnitude indices, but this only 
resulted in marginal differences (K-W 
chi-squared=2.8487, df=1, p-value=0.09). If only 
the MA and MH indices were considered, the 
differences in performance between MLR and 
ANFIS reached up to more than 10%, and signifi-
cant differences were observed (K-W 
chi-squared=5.13, df=1, p-value=0.02). Differ-
ences between MLR and GAMs that resulted in 
improvements in adjusted R2s beyond 5 % were 
found only for the MA and MH indices (WK-W 
chi-squared=6.72, df=1, p-value=0.01). In addi-
tion, ANFIS and GAMs outperformed MLR in 
one or several of the other index types (T, F and 
RC). On the other hand, RF did not show signifi-
cant enhancements in relation to MLR (K-W 
chi-squared=0.017439, df=1, p-value=0.8949). 

DISCUSSION

Model performance and predictor variables

This study confirms the findings of other works 
that not all the hydrological indices present the 
same potential to be predicted (Carlisle et al., 
2010; Yadav et al., 2007). Among the magnitude 
indices, MA and MH outperformed the ML 
indices. The high predictive performance of the 

leaving out one gauge at a time, developing a new 
model based on the remaining 155 observations 
and finally estimating the hydrological index for 
the left-out gauge. The results from this proce-
dure produced estimates of each hydrological 
metric as if the gauging station were an ungauged 
site. The variation between observed and predict-
ed values represents the uncertainty with which 
the model would be applied to predict index 
values at ungauged sites (Carlisle et al., 2010) 
and allows an assessment of the robustness of 
each method for estimating hydrological indices. 

We employed the root-mean-square-deviance 
(RMSD) and the adjusted R2 to assess the corre-
spondence between observed and estimated 
values as a relative performance of each model, 
following other authors (Carlisle et al., 2010; 
Sanborn & Bledsoe, 2006; Van Sickle et al., 
2006). Hence, models producing the lowest 
RMSD and the highest adjusted R2 were deemed 
superior. In addition, we used Kruscal-Wallis to 
test whether the differences in adjusted R2 found 
between the modeled indices and modeling 
techniques were significant.

homogeneous as possible based on series of 
binary rules. RF introduces random variation to 
CARTs by growing a defined number of trees 
with a bootstrap sample of the training data and a 
random sample of the predictors. The importance 
of the predictor variables is evaluated by random-
ly permuting each predictor variable in turn and 
predicting the response of the bootstrap sample 
observations. The decrease in prediction perfor-
mance is the measure of importance of the origi-
nal variable. Non-transformed response or 
predictor variables were used in the RF models.

Adaptive Neuro-Fuzzy Inference System (ANFIS)

ANFIS combines qualitative aspects of human 
knowledge from Fuzzy Inference Systems (FISs) 
with an effective, advanced machine learning 
method (neural networks) to adjust and tune these 
rules (Jang, 1993). 

A FIS is based on fuzzy decision rules and the 
fuzzy reasoning unit (Jang, 1993). The fuzzy 
decision rules (if-then rules) are rules expressed 
in the form “if X (input variable) is A then Y 
(output variable) is B”, where A (premise) and B 
(consequence) are linguistic values (e.g., high 
and low). Fuzzy logic allows, within these 
decision rules, any judgment state to take values 
between 0 and 1 according to its probability. In 
this regard, Membership Functions (MFs) are the 
functions that relate a variable to the probabilities 
associated with the judgment states.  

Fuzzy reasoning is an inference procedure 
used to derive conclusions from a set of fuzzy 
decision rules. The steps of fuzzy reasoning 
performed by a FIS are (Jang, 1993; Marce et al., 
2004):

1. Compare the input variables with the 
MFs in the premise part of the fuzzy rules to 
obtain the probability of each linguistic label 
(fuzzification).

2. Combine (through logic operators) the 
probability in the premise part to get the weight of 
each rule. 

3. Generate the qualified consequent of 
each rule depending on its weight.

4. Aggregate the qualified consequents to 
produce a crisp output (defuzzification). 

Given an input-output problem, the construc-

tion of a FIS has two fundamental steps: the spec-
ification of an appropriate number and type of 
input and output MFs (structure identification) 
and the specification of the shape of the MFs 
(parameter estimation). The structure identifica-
tion was solved by applying a trial-and-error 
procedure and a conservative criterion (i.e., mini-
mum number of parameters in the best fit). More-
over, since the maximum number of parameters 
to be fitted increases exponentially with the 
number of variables and MFs and the total 
number of parameters should not exceed 1/6 the 
number of cases (Marce et al., 2004), a maximum 
of 3 MFs was established.  Once the model struc-
ture, i.e., number of MFs, was defined, we 
estimated the parameters corresponding to each 
MF through the use of a numerical method called 
the Hybrid Learning Method (Marce et al., 2004). 
Specifically, these parameters were defined using 
adaptive neural networks algorithms. To avoid 
overfitting problems during the estimation of 
these parameters, the data set was randomly split 
into a training set (2/3 of the data set) used to fit 
the values and a trial set (1/3 of the data), which 
was not used by the hybrid learning algorithm. 
The splitting procedure was repeated 200 times 
and each time the parameters were adjusted 
individually. The hydrological indices were 
converted to the range (0 1), while the environ-
mental variables were converted to z-scores (i.e., 
mean=0, standard deviation=1) according to 
ANFIS requirements. Finally, to obtain the 
importance of the predictors in each model, envi-
ronmental variables were removed from the 
model one at a time while holding all other 
predictor variables. Then, for each model we 
calculated the predictive performance through the 
adjusted R2. The larger the decrease of predictive 
performance, the greater the assumed importance 
of that variable. 

Validation and evaluation of model perfor-
mance

A jackknife cross–validation procedure was 
performed with R statistical software to test the 
predictive performance of each modeling 
technique for the 16 hydrological indices. This 
cross-validation procedure was applied by 

Environmental variables (predictors)

Several studies have highlighted the importance 
of climate, topography, land cover and geology 
on the hydrological regime regardless of 
geographic location (Kennard et al., 2010; Lane 
et al., 2017; Sanborn & Bledsoe, 2006). Thus, 
environmental variables were used to explain the 
hydrological character of the recorded flow series 
and predict this character in the entire river 
network. A synthetic river network (SRN) was 
delineated using a 25-m digital elevation model 
(DEM) with the NestStream program (Benda et 
al., 2007). The SRN comprised 667 406 segments 
with lengths ranging from 16 to 800 m and was 
used as a spatial network to integrate the hydro-
logical and environmental information. Predictor 
variables were extracted from existing databases 
provided by several national and regional institu-
tions. The predictor variables for each segment 
represented the mean value of the variables in the 
upstream catchment. A set of 19 variables was 
selected (Table 2); detailed information regarding 
the units, scale and sources of information can be 
found in Peñas et al. (2014).

In addition, according to the maximum 
number of degrees of freedom allowed by the 
different techniques, a maximum of 6 predictor 
variables was established for the models. The 
selection of these 6 variables was based on the 
combination of scatter plots (hydrological 
indices versus environmental variables) and 
parametric correlations to identify the environ-
mental variables that were most meaningful for 
the prediction of each dependent variable (Knight 
et al., 2011). In this regard, the Pearson correla-
tion values between the hydrological indices and 
the predictor variables were used as the main 
screening criterion. Hence, for each hydrological 
index, we selected the 6 predictor variables with 
the highest correlation values. 

Modeling Techniques

The predictive performance of 4 distinct 
techniques to model hydrological indices was 
compared in this study. Modeling and statistical 
analysis were performed with R statistical 
software using the stats (v.3.3.2), gam (v.1.14) 

and randomForest (v.4.6 ) packages, except in the 
case of ANFIS models, which were developed 
using functions from the Mathwork´s MATLAB 
Fuzzy Logic Toolbox (FLT) included in a 
MATLAB code programmed by Marcé et al. 
(2004) and adapted by the authors to carry out the 
specific analyses performed in this study. The 
following section briefly describes each of the 
five modeling techniques.

Multiple Linear Regression (MLR)

MLR assumes a linear relationship between the 
predictor and the response variables through the 
estimation of parameters for each predictor. 
Specific transformations (Tables 1 and 2) were 
applied to meet the assumptions (normality, inde-
pendence and homoscedasticity) for applying 
MLR. If data did not meet the assumptions 
through any transformation, that which was 
closest to meeting these requirements was used. 
The relative importance of each variable was 
established based on the comparison of the 
regression test statistic T value. 

Generalized Additive Models (GAMs)

GAMs are semi-parametric models (Hastie & 
Tibshirani, 1986) that relate the predictor and 
dependent variable through a link function and 
estimate a non-parametric function for each 
predictor in order to adapt it to the local behavior 
of the regression function in several regions (Ven-
ables & Dichmont, 2004). The identity link func-
tion of the Gaussian family was applied to the 
transformed variables using the same transforma-
tions as in MLR, given that they were assumed to 
be normally distributed. Thin plate regression 
splines were used with a maximum of 3 degrees of 
freedom. Parallel to MLR, the relative importance 
of each variable was established based in the com-
parison of the regression test statistic T value. 

Random Forest (RF)

RF (Breiman, 2001) comprises an ensemble of 
individual Classification and Regression Trees 
(CARTs). CARTs split the dimensional space 
defined by the predictors into groups that are as 

unaffected by impoundments or significant 
abstraction upstream were selected for analysis. 
In addition, we selected gauges with data avail-
able for the 1976-2010 period and analyzed the 
quality of the series (Peñas et al., 2014). Finally, 
156 gauges were selected, which accounted for an 
average length of 17 years of data (Fig. 1).

It was beyond the scope of this study to 

predict and evaluate all the hydrological indices 
currently in use (see Olden & Poff, 2003); there-
fore, we selected one or several indices represent-
ing each of the five ecologically relevant aspects 
of the flow regime, i.e., magnitude, timing, 
frequency, duration and rate of change (Olden & 
Poff, 2003; Table 1).

tion fittings has been pointed out (Sanborn & 
Bledsoe, 2006). There are many examples of the 
use of other modeling and machine learning 
techniques to model many environmental issues 
(e.g., Alvarez-Cabria et al., 2016; Elith et al., 
2006; Manel et al., 1999, Marcé et al., 2004). In 
contrast, their application in the prediction of 
hydrological indices has been limited, although 
they could provide important benefits in this field 
(Alcázar et al., 2008; Heuvelmans et al., 2006; 
Snelder et al., 2009).

In this study we concentrated on developing 
statistical models for 16 hydrological indices 
covering the 5 ecologically relevant hydrologic 
attributes (i.e., magnitude, timing, frequency, 
duration and rate of change; Poff et al., 1997). We 
used one traditional technique (Multiple Linear 
Regression (MLR) and three more complex 
techniques that apply contrasting rationale to 
model the distribution of the response variable: 
Generalized Additive Models (GAMs), Random 
Forest (RF) and Adaptive Neuro-Fuzzy Inference 
System (ANFIS). Therefore, the objectives of this 
study were to 1) explore the ability of models to 
predict different types of hydrological indices and 
2) compare the performance of 5 modeling 
techniques to predict 16 hydrological indices at 
ungauged sites. 

METHODS

Study Area

The study area comprises the catchments of the 
northern third of the Iberian Peninsula (Fig. 1), 
covering a total area greater than 124 000 km2. It 
includes a heterogeneous set of environmental 
conditions. 

The area draining into the Cantabrian Sea 
encompasses several catchments with drainage 
areas ranging from 30 to 4907 km2, covering a 
total area of 22 000 km2. The rivers are confined 
by the Cantabrian Cordillera, which reaches up to 
2600 m a.s.l. and runs parallel to the coast. Thus, 
they are characterized by high slopes and short 
main stream lengths. The climate varies from 
thermo-temperate Atlantic on the coast to oro- 
and supra-temperate in the inner regions 
(Rivas-Martínez et al., 2004). Precipitation is 

abundant throughout the year with a mean of 
1300 mm/year, with maximum rainfall in Decem-
ber (150 mm/month) and minimum in July (50 
mm/month). Snowfall is frequent in winter above 
1000 m a.s.l. More than 50 % of the surface is 
covered by deciduous forest, scrubs and grass-
lands, while 10 % is occupied by agriculture. 

Meanwhile, the Mediterranean area is mainly 
covered by the Ebro catchment, along with a set 
of medium-sized basins in the east coast. The 
Ebro catchment covers a total area of 85 530 km2. 
It is enclosed by the Cantabrian Mountains and 
the Pyrenees (3400 m a.s.l.) in the north, the Cata-
lan Coastal Chain (1712 m a.s.l.) in the east, and 
from the north-west to the south-east by the 
Iberian massif (2300 m a.s.l.), which creates a 
dense river network in the catchment boundaries 
and an extended flat surface in the interior. This 
area is characterized by a meso-Mediterranean 
and supra-Mediterranean climate (Rivas-Martínez 
et al., 2004), with a mean annual precipitation of 
650 mm, varying from 300 mm in the central area 
of the main fluvial axis to 1700 mm in the Pyre-
nees Mountains, where snow is abundant in 
winter and early spring (Bejarano et al., 2010). 
The precipitation regime in the Mediterranean 
region has its maxima in autumn and spring and 
minima in winter and summer. Agricultural land 
accounts for 50 % of this territory. 

The Catalan catchments comprises several 
catchments ranging from 72 to 5000 km2, cover-
ing a total area of 16 500 km2 that drains directly 
from the Pyrenees or the Catalan Coastal Chain 
to the sea. This area is dominated by the Mediter-
ranean oceanic climate on the coast and a temper-
ate climate in the mountains. Precipitation 
declines from an annual mean of 1200 mm/year at 
the northern river heads to less than 500 mm/year 
in the southern catchments. Coniferous and 
broadleaf forest, scrubs and grasslands occupy 
more than 60 % of the surface in the northern 
catchments, which are progressively replaced by 
agricultural land in the south.

Hydrologic Data and Hydrological Indices

Several Spanish water agencies and regional 
governments provided series of daily mean flow 
measured at 428 gauging stations. Only gauges 

INTRODUCTION

River flow regime is a key element that structures 
freshwater ecosystems (Poff et al., 1997). Indeed, 
the understanding of the bio-physical associations 
between hydrological variability and stream 
biological communities is a critical scientific and 
management challenge (Alvarez-Cabria et al., 
2017). However, it is frequently the case that 
streamflow data are not available at a site of inter-
est such as where biomonitoring is carried out 
(Poff & Zimmerman, 2010; Sanborn & Bledsoe, 
2006). This hinders the exploration of the flow 
regime influence on stream ecology and ultimate-
ly the management of these systems. 

Natural flow regime can be described through 
a collection of ecologically relevant hydrological 
indices (Olden & Poff, 2003). Hence, interest in 

the prediction of these hydrological indices in 
ungauged streams has grown rapidly in recent 
years (Carlisle et al., 2010; Kennen et al., 2008). 
Most of the work has been aimed at addressing 
water yield and flooding issues. Thus, models to 
predict average flows, flood quantiles, flow dura-
tion curves or low-flow parameters dominate the 
literature (Sanborn & Bledsoe, 2006). In contrast, 
prediction of ecologically relevant hydrological 
indices has received limited attention (Carlisle et 
al., 2010; Knight et al., 2011; Sanborn & Bled-
soe, 2006). 

Multiple linear regression has been the most 
commonly used statistical technique to predict 
hydrological indices in ungauged sites (Knight et 
al., 2011). However, the potential improvement 
in model performance when using other modeling 
procedures that do not assume specific distribu-
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